Pathways to Discovering DM
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CF3: Cosmic Probes of DM

CF2: Wave-Like DM CF1: Particle DM
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Light experimental probes
Indirect Detection

Direct Detection
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is ruled out by
microlensing, CMB, other cosmic probes

~90 orders of magnitude for the possible dark matter mass:
1022 eV to 1068 eV
Bounded by astrophysical constraints.

Very low mass dark matter

suppresses structure formation
Massive compact obejct dark matter
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Indirect Detection

Direct Detection

EF10, RF6, NF3 Accelerators

is ruled out by
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Here | will discuss three example cases — two focusing on

complementary between cosmic and terrestrial detections, and a
third case that relies primarily on cosmic probes.

Very low mass dark matter
suppresses structure formation
Massive compact obejct dark matter




Example 1:
Light thermal DM
with DM-nucleon

Interactions
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CMB and Small-Scale Structure

Direct Detection
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Current interesting excess in low-threshold detectors below a few hundred eV.
Could it be dark matter? How would we confirm it?

https://arxiv.org/abs/2202.05097 EXCESS workshop
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Current interesting excess in low-threshold detectors below a few hundred eV.
Could it be dark matter? How would we confirm it?

https://arxiv.org/abs/2202.05097 EXCESS workshop
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Cosmic Probes

e=l ° Interesting excess in low-threshold
detectors at ~ 50 MeV.
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SuperCDMS turns on low threshold detectors in 2024,
continues to see some events here.




New generation of optical surveys with
wider and deeper imaging:
50 DES, SMASH, MagLiteS, ATLAS,
o Pan-STARRS, HSC, Gaia
and others...
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Currently ~60 known MW satellites, predict ~220 total MW satellites over full sky
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Expect ~100 from Rubin LSST if DM is consistent with CDM on these scales [and if we are not yet at the galaxy formation cutoff]
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* Interesting excess in low-threshold
detectors at ~ 50 MeV.

« As SuperCDMS turns on lower threshold
detectors, they continue to see events in
this regime.
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In 2026, the first analysis of Rubin LSST data detects only 5 new MW satellites.




Temperature of universe [eV]
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Snowmass2021: Dark Matter Physics from Halo Measurements Fig 1. arXiv:2203.07354




. S i f to WDM:
Interacting Dark Matter Nadler Gluscevc. Bodcy, RW, 2015
M [Mo]
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- Collisional damping due to DM-baryon iy m—
scattering at early times suppresses

power on small scales
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Mass of the smallest halo allowed to form
corresponds to the size of the horizon

MwpM — 1.2 keV
MWDM = 4.7 keV
oo = 1072 cm?
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oo = 1072 cm?
Momentum —~ " Hubble rate i

transfer rate

yman-a Forest
Cosmic Probes ‘

Direct Detection

-

107! 10!

Constraints from Dwarf Galaxies
(Nadler+DES Collaboration 2021)
Lyman-alpha forest (Rogers, Dvorkin & Peiris 2022)

Dark matter-nucleon cross sectic (cm?)




. 9
Dark matter-nucleon cross section (cm*)

—
|

Cosmic Probes

* Interesting excess in low-threshold
detectors at ~ 50 MeV.

« As SuperCDMS turns on lower threshold
detectors, they continue to see events in
this regime.
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In 2026, the first analysis of Rubin LSST data detects only 5 new MW satellites.
—> indication of either suppressed small-scale power
or detection of the limit of galaxy formation
How do we tell the difference?




Small-scale structure probes

Spectrograph

Lyman-alpha forest Strong gravitational S
power spectrum e




—_ —
| |

—_
|
IS

. 9
Dark matter-nucleon cross section (cm*)

Small-Scale Structure

——

Cosmic Probes * Interesting excess in low-threshold

4l detectors at ~ 50 MeV.

» As SuperCDMS turns on lower threshold

B Bliifon detectors, they continue to see events in
this regime.

* The first published analysis of Rubin
LSST satellites only detects 5 satellites.
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Lyman-alpha forest, strong lensing, and stellar streams
all find less substructure than CDM predicts, below the
threshold of galaxy formation.




https://arxiv.org/abs/1704.01577
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DM heating

Temperature [K]

102
Galactocentric Distance [kpc]

https://arxiv.org/abs/2010.00015

An analysis of neutron stars and exoplanets by
JWST shows both are hotter than expected.



Neft is sensitive to DM-
baryon interactions

Electromagnetically coupled Dirac Fermion

Yp+Yp+Planck
Yp+¥Yp+Simons Observatory
Yp+Yp+CMB-S4

CMB measurements can put a lower limit
on the DM mass due to its impact on Neff.

https://arxiv.org/abs/2202.03515
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» As SuperCDMS turns on lower threshold
detectors, they continue to see events in this
regime.

* The first published analysis of Rubin LSST
satellites only detects 5 satellites.

- Lyman-alpha forest, strong lensing, and
stellar streams all find less substructure than

SN CDM predicts

* Neutron stars and exo-Jupiters are hotter
than expected.
- CMB indicates a DM particle with M > 10Mev
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By this point, several low threshold experiments have
continued to see events at 50 MeV.
Design an experiment to see the peak in the velocity
distribution function rather than just the tails.
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* As SuperCDMS turns on lower threshold
detectors, they continue to see events in this
regime.

* The first published analysis of Rubin LSST
satellites only detects 5 satellites.

- Lyman-alpha forest, strong lensing, and
stellar streams all find less substructure than

Dark matt.erl Tniss (Gleo\r’l/(?) 7 ~ CDM prediCtS

« Neutron stars and exo-Jupiters are hotter
than expected.

« CMB indicates a DM particle with M > 10Mev
» Clear detection of a 50 MeV signal in
SuperCDMS
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Detection or absence in accelerator-based experiments (e.g. LDMX) would
disentangle mass-scale from coupling of new DM-SM interaction




Example 2:
Axion-like particles
with axion-photon
interactions
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Gravitational wave hints of an
axion-like particle

I— Advanced LIGO observes a continuous wave
= —— signal with a frequency 300 Hz - 15 kHz.

" e Indicates an axion mass of 10-13 — 10-11 eV
: due to BH super radiance — a “boson cloud”
around the spinning black holes.

Provides a clear indication of where to ook in
future cavity, NMR, and lumped element experiments.

First search outlined in R. Abbott et al. (LIGO, Virgo, KAGRA) Phys. Rev. D 105, 102001
based on ideas outlined in Zhu et al 2020 ; See also https://arxiv.org/abs/2203.07984
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Experimental probes of wave-like DM

existing bounds

stand?

A. Berlin

Snowmass2021 CF2 White Paper




Experimental probes of wave-like DM

existing bounds

Do a targeted search Iin
NMR or cavity
experiments at

10-13 — 10-11 eV

Snowmass2021 CF2 White Paper




Experimental probes of wave-like DM

Do a targeted search in
NMR or cavity
experiments at

10-13 — 10-11 eV.

Detection made! Enables
a map of the DM density
and velocity in the DM
halo.

existing bounds

Snowmass2021 CF2 White Paper




Towards mapping the DM
halo with an ALP

Advanced LIGO observes a continuous wave signal with a

frequency 300 Hz - 15 kHz. Indicates an axion mass of 10-13 —
10-11 eV.

Targeted NMR search for a 10-13 — 10-11 eV ALP with NMR
experiments and make a detection!

Expand experiments that can target this mass range, including
NMR, SRF cavity, and lumped element experiments.

Use these to map the DM halo and its annual modulation —>
future synergies with astrophysical measurements and predictions
of the local DM density and velocity in the Solar circle.




Example &:

DM with self-interactions
and suppressed
small-scale power



DM halo profiles in SIDM

» Measurements of cluster profiles with
cores provide indication of self-
interactions

0.2 04 06 1.0 2.0 4.0

« Measurements of dwarf galaxy profiles
also show cores

Spectrograph

Snowmass2021: Dark Matter Physics R LA L

from Halo Measurements Fig 4. arXiv:2203.07354
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LSST detects 5 satellites, significantly fewer
than expected.

Strong lensing and streams see impact of
dark substructures at 5x108 Msun.

Missing power is observed below the scale
of galaxy formation (e.g. 107 Msun) by
strong lensing (Rubin + JWST, ALMA),
streams (Rubin+Gaia+DESI+ELTs), and
Lyman-alpha forest (DESI+ELTs)




My (M)

A ST T M S Consistent with
. WDM-+SIDM

._.
o
AN

e Could be 10 keV DM with self-interactions

asiom/ My (em?g™1)

B LSST MW Sats. + Spec.

CF3 Draft Report (with Nadler, Yan et al)
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Tulin & Yu 2018

Consistent with
WDM+SIDM

Could be 10 keV DM with self-interactions

Also consistent with 10 GeV DM that is
coupled to a light mediator + dark radiation,
which suppressed small-scale power in a
similar way.

If profiles are measured at different mass
scales, this can pin down the DM mass.

In the latter case, there will be a signal in Neff
as measured by the CMB (e.g. CMB-S4)
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Three examples of many possibilities!

Discussed 3 examples:

« Thermal DM particle at ~50 MeV. Signals of suppressed small-scale structure, extra heating in
dense objects, and detection possible in low-threshold direct detection experiments

Cosmic probes help distinguish DM from background events, inform the mass and interaction
strength, and motivate expanded direct detection and accelerator experiments.

« Axion-like particle at ~10-12 eV. Signal of BH super-radiance detectable in GW; detection possible
in NMR and cavity experiments.

Cosmic probes provide a target for the search region of terrestrial experiments; which then
enable mapping the DM halo.

« Self-interacting DM combined with suppression of small-scale power.

Cosmic probes are the primary window.

Y Extensive complementarity across CF and across frontiers. Wide range of experiments and
astronomical observations are relevant to pinning down each of these cases! Very exciting
discovery potential this decade.




