Neutrino Beams and Instrumentation

- Beams
- Instrumentation

Please see AF2, NF09, and NF10 reports! Emphasis will be on future, pre-TDR instruments

> Josh Klein , U. Penn Snowmass July 20, 2022

Neutrino Beams

Neutrino Beams BEAMS of NEUTRINOS!

Neutrino Beams BEAMS of NEUTRINOS!

- You can't focus them
- You can't even collimate them
- And with $\sigma \sim 0.1-10$ fb, you need huge number of them
- To get even to ~1 event/day 1000 km away or more

Free Neutrino Beams

- Solar neutrinos
- Atmospheric neutrinos
- Extragalactic neutrinos
- Cosmic background neutrinos
- Diffuse supernova background neutrino
- Supernova burst neutrinos But working hard to turn this one on

Additional Advantages:

- In some cases (e.g., solar) flavor content well known
- Sources are intrinsically interesting

Disadvantages:

- Can't turn them off (or on...)
- Can't change flavor content
- Can't change spectrum

Funding agencies not turning these off in next decade

Controllable Neutrino Beams

Many options!

- Horn beams --- "focused" high-energy beams with selection of flavor/antiflavor
- Spallation neutron sources --- high ν flux (typ. stopped π) in pulsed time structure
- Beam dump beams --- Enhanced high-energy v (and exotic state) source
- Reactor neutrinos --- pure, low-energy anti- v_e flux, free to funding agencies
- Cyclotron/source beams --- pure flavor content with well-known spectrum
- Beta beams --- pure flavor content, known spectrum, at high energies
- Stored muon beams --- very well-known flavor content and spectrum, high flux
- Collider beams --- very high energy, pretty good tracking at production vertex

"Horn" Beams

"Horn" shape acts as magnetic total internal reflector

FNAL Booster Horn

Magnetic focusing allows for flavor/antiflavor selection by reversing current--- focusing π - rather than π +

World's most intense neutrino beam

- Current beam design uses 3 serial horns
- Proton Improvement Plan II ("PIP II") gets beam up to 1.2 MW for 120 GeV p
 - 800 MeV superconducting linac will replaced current 400 MeV linac
- Critical DUNE Phase II physics needs 2.4 MW
 - Linac will go to 2 GeV
 - 50-year-old Booster replaced with rapid-cycling synchrotron or linac up to 8 GeV
 - Rest of design is already done to accommodate 2.4 MW
 - Lots of other physics leveraged by these upgrades— 2-4x10²¹ POT/year

Major challenges: How many vs, what flavors, what spectrum, and how do they interact...?

"Spallation" Beams

- Oak Ridge (COHERENT) pioneered "parasitic" v program
- Japanese Spallation Neutron Source will allow K decay at rest ν physics

Next-generation is hybrid spallation source+horn beam:

European Spallation Source v Super Beam (ESSvSB)

Four parallel horns so 5/4=1.25 MW per target

/20 MeV/ m²/ 200 days

Energy (GeV)

Cyclotron/Source Beams

- Standard β sources can be made very hot but energies tend to be very low
- Higher-energy β sources are short-lived; hard to bring to a detector
- But if you can make the source right there, can get both!

IsoDAR---high current (10 mA of protons at 60 MeV) cyclotron to

make ⁸Li off of ⁷Li via neutron capture

Order-of-magnitude higher power than existing cyclotrons

Stored Muon Beams

- High flux
- Very well known flavor+energy
- And all at 3-5 GeV
- Important demonstration on the road to a muon collider
- While also making precise (1%) v+A measurements and other physics

nuSTORM

At FNAL or CERN

5 GeV "pion flash" neutrinos

Collider "Beams"

Neutrinos at TeV energies!

Possibility (with good enough timing) to tag v at the production point...

Neutrino Instrumentation

The Colloquial View...

Big Tank of Stuff

Neutrino Instrumentation The Game Has Changed

- Resolution Frontier
- Precision Frontier
- Energy Frontier

Neutrino Instrumentation The Game Has Changed

- Resolution Frontier
- Precision Frontier
- Energy Frontier

Neutrino Instrumentation

The Game Has Changed

- Resolution Frontier
- Precision Frontier
- Energy Frontier

Neutrino Instrumentation

The Game Has Changed

- Resolution Frontier
- Precision Frontier
- Breadth Frontier --- optimizing physics from eV to EeV

Resolution

Need better position resolution to resolve neutrino pileup at DUNE Near Detector site

Narrowing energy resolution in lowenergy detectors reduces backgrounds Narrowing timing resolution for better reconstruction in photon-based experiments

High Purity GE detectors $\sigma_{\rm F}$ ~0.1%

Precision

- Horn beams have a complex mixture of flavors and fluxes
- And neutrino interactions are not well understood
- Need new instruments to constrain fluxes, spectra, and cross sections

- DUNE Near Detector ("ND-GAr")
- High-pressure gaseous argon TPC
- Precision reconstruction of final states

- T2K Near Detector ("SFGD")
- 3D reconstruction with scintillator cubes+fibers
- Precision reconstruction of final states

Breadth

Low-E v physics at DUNE can be leveraged by

underground argon+shielding

Neutron shield reduces scatters in fididucial volume

Underground Ar significantly reduces radiogenic backgrounds

Figure 5: ³⁹Ar and ⁸⁵Kr from DarkSide-50 showing a x1400 reduction in ³⁹Ar for UAr.

LAPPD picosecond timing

Hybrid Cherenkov/scintillation detectors would have "best of

both worlds"---high and low-energy programs

Spectral sorting--Dichroicons

Example of pushing energy thresholds up to EeV

EeV

Figure 28. Schematic and map ARA stations at the South Pole. Figure reproduced from Ref. [661]

ARA radio detection

Cryocube for Ricochet NTD-Ge

Breadth

keV MeV GeV TeV PeV

$Solar + reactor + supernova + 0\nu\beta\beta + beam + atmospherics$

Experiment	Basic Approach	Enabling Technology
SloMo	LArTPC	10 ktonne underground argon neutron shield
SoLAr	LArTPC	charge+light pixels
Theia	Hybrid Cherenkov/scintillator	WbLS fast timing dichroicons
LiquidO	Scintillator tracking	"Milky scintillator" fiber readout
LArXe	${ m LArTPC+Xe}$	photo-ionizing dopants xenon loading

Coherent v+A scatttering

Experiment	Enabling technology	$E_{th}(NR)$	target material	mass	status	ν source
MINER [105]	phonon detectors	O(100eV)	Ge, Al ₂ O ₃	O(100g)	D/C	R
NUCLEUS [106-108]	phonon detectors	O(10eV)	$CaWO_4$, Al_2O_3	O(10g)	D/C	R
RICOCHET [109]	phonon detectors	O(10eV)	Ge, Zn	$\mathcal{O}(1 \text{kg})$	D/C	R
BULLKID [110]	phonon detectors	O(10eV)	Si	O(10g)	R&D	-
CONNIE [111]	CCD sensors	O(100eV)	Si	O(100g)	run	R
COHERENT [112]	cryog. scintillator	O(1keV)	Csl	O(10kg)	D/C	S
COHERENT [112]	HPGe	O(1keV)	Ge	O(10kg)	D/C	S
COHERENT [112]	scintillator	O(1keV)	Nal	$\mathcal{O}(1ton)$	D/C	S
CONUS [113]	HPGe	O(1keV)	Ge	O(1kg)	run	R
Dresden [114]	HPGe	O(1keV)	Ge	$\mathcal{O}(1 \text{kg})$	run	R
nuGen [115]	HPGe	O(1keV)	Ge	$\mathcal{O}(1 \text{kg})$	run	R
TEXONO [116]	HPGe	O(1keV)	Ge	$\mathcal{O}(1 \text{kg})$	run	R
NEON [117]	scintillator	O(1keV)	Ge	O(10kg)	run	R
SBC [118]	bubble	O(100eV)	IAr(Xe)	O(10kg)	R&D	R
NEWS-G [119]	gaseous	O(100eV)	Ne,CH ₄	O(100g)	run	-
COHERENT [120]	liquid noble	O(1keV)	lAr	O(10kg)	run	S
RED100 [121]	liquid noble	$\mathcal{O}(1\text{keV})$	IXe	O(100kg)	run	R
CHILLAX [122]	liquid noble	O(100eV)	IAr,IXe	O(10kg)	R&D	R/S
NUXE [123]	liquid noble	O(100eV)	IAr,IXe	$\mathcal{O}(10\text{kg})$	R&D	R

(Not included here many dedicated $0\nu\beta\beta$ experiments!)

Extragalactic sources

Proposed Detector	Basic Approach	Energy Range	Enabling Technology	
P-ONE	Water Cherenkov	> TeV	Scale,	
			telecomm fibers	
ICECUBE-Gen2 (optical)	Ice Cherenkov	TeV-PeV	Scale,	
			multi-PMTs	
Trinity	Air-shower Cherenkov	10-1000 PeV	60° FOV optics	
RET	Radar reflection off ionization	> 10 PeV	In-ice radar reflection	
TAMBO	(Air-shower) water Cherenkov tanks	1-100 PeV	Mountain/valley geograph	
RNO-G	Askaryan emission in ice	> PeV	Greenland ice,	
			solar+wind power	
			autonomous radio detector	
ICECUBE-Gen2 (radio)	Radio array	PeV-EeV	Omni-directional	
			cylindrical antennas	
BEACON	Radio air-shower detection	100 PeV-EeV	Mountain geometry,	
			interferometric	
			phased arrays	
GRAND	Geomagnetic air-shower radio	> PeV	Very large-scale radio arra	
POEMMA	Space-based optical air-shower	10 PeV-40 EeV	Wide-FOV	
			Schmidt telescopes,	
			Cherenkov camera	
PUEO	Balloon-based radio in ice and air	> EeV	Realtime	
			interfermetric beamforming	
			Xilinx RFSoC	
GCOS	Nested water Cherenkov tanks +radio	> 10 EeV	TBD	

Table 4: Proposed detectors and enabling technologies for high-energy and ultra-high-energy neutril detection. Only those experiments not yet past the technical design phase are included.

Collider Neutrinos

Comaci Neathing						
Technology	FASER2	FASERnu2	Adv-SND	FLArE	FORMOSA	
		TASLIMIUZ	Auv-SIVD	ILAIL	TORWOOM	
Large aperture SC magnet	×					
High resolution tracking	×		×	x		
Large scale emulsion		×				
Silicon tracking			×			
High purity noble liquids				×		
Low noise cold electronics				×		
Scintillation				x	×	
Optical materials				x	×	
Cold SiPM				x		
Picosec synchronization			×	×	×	
Intelligent Trigger	x		×	x	x	

Table 5: Enabling technologies for the detectors and systems of the far forward physics facility.

Summary

- New era in development of high-flux neutrino beams
- Many creative ideas for new instrumentation and detectors
- Advancing detector resolution, precision, and breadth
- Very exciting time for future neutrino experiments!