Neutrino Beams and Instrumentation

* Beams
* Instrumentation

Please see AF2, NFO9, and NF10 reports!
Emphasis will be on future, pre-TDR instruments
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Neutrino Beams




Neutrino Beams
BEAMS of NEUTRINQOS!




Neutrino Beams
BEAMS of NEUTRINQOS!

You can’t focus them

You can’t even collimate them
And with o ~ 0.1-10 fb, you need huge number of them
To get even to ~1 event/day 1000 km away or more




Free Neutrino Beams

Solar neutrinos

Atmospheric neutrinos

Extragalactic neutrinos

Cosmic background neutrinos

Diffuse supernova background neutrino ___—
Supernova burst neutrinos

Additional Advantages:
* Insome cases (e.g., solar) flavor content well known
e Sources are intrinsically interesting




Controllable Neutrino Beams

Many options!

e Horn beams ---

e Spallation neutron sources ---
* Beam dump beams

* Reactor neutrinos ---

e Cyclotron/source beams ---

* Beta beams ---

e Stored muon beams ---

e Collider beams ---




“Horn” Beams

You can’t focus the neutrinos,
Beam Absorber
N but you can focus the mesons

Van der Meer horn

Magnetic Focusing
Horn i

Magnetic focusing allows for flavor/antiflavor
selection by reversing current---
focusing m rather than t*
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 Current beam design uses 3 serial horns

* Proton Improvement Plan Il (“PIP 11”) gets beam up to 1.2 MW for 120 GeV p

e Critical DUNE Phase Il physics needs 2.4 MW

Major challenges: How many vs, what flavors, what spectrum, and how do they interact...”?




“Spallation” Beams

e Oak Ridge (COHERENT) pioneered “parasitic” v program
* Japanese Spallation Neutron Source will allow K decay at rest

v physics

Next-generation is spallation source+horn beam:

14 1.6
Energy (GeV)

Hot Cell Morgue

* Able to manipulate/repair Store radioactive wastes.
hadron collector.

¢ Work under radioactive
environment.

Power Supply Unit
* 16 modules (350 kA pulse/14 Hz)

¢ Located above the beam Hadronic Collector

switchyard. LA (Four Horn System)
¢ Outside of the radioactive part p

of the facility.

Proton Beam (E;=2.5 GeV, 14 Hz)
4x1.25 MW



Cyclotron/Source Beams

* Standard [3 sources can be made very hot but energies tend to be very low
* Higher-energy B sources are short-lived; hard to bring to a detector
 But if you can make the source right there, can get both!
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Stored Muon Beams

High flux
Very well known flavor+energy LSHEH Y]

And a” at 3_5 GeV = 6D cooling demonstrator ””’”"”D
Important demonstration on the road [ ocs o
to a muon collider

While also making precise (1%) v+A
measurements and other physics -

Storage ring

Detector

At FNAL or CERN

v flux at Detector front Face

5 GeV “pion flash” neutrinos
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Collider “Beams”

FPF: Neutrinosina2x2m?atZ=617m

Particles (Hz / cm? / GeV)
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Possibility (with good enough timing) to tag v at the production point...




Neutrino Instrumentation
The Colloquial View...
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Neutrino Instrumentation
The Game Has Changed

Success has raised the bar---three primary areas of interest:
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Neutrino Instrumentation
The Game Has Changed

Success has raised the bar---three primary areas of interest:

e Resolution Frontier
e Precision Frontier
* Enerasy Frontier

keV MeV GeV TeV PeV
sl g < Long Baseline ~ <
olarvs ong Baseline Extragalatic 15
Coherent v scattering e reactorlgsm = Atmospherics
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Neutrino Instrumentation
The Game Has Changed

Success has raised the bar---three primary areas of interest:

* Resolution Frontier
* Precision Frontier
Frontier --- optimizing physics from eV to EeV

keV MeV GeV TeV PeV
sl g < Long Baseline ~ <
olarvs ong Baseline Extragalatic 15
Coherent v scattering e reactorlgsm = Atmospherics

>
Collider vs

< SN burst vs>
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Resolution

Need better position resolution to resolve

neutrino pileup at DUNE Near Detector site
Narrowing timing

resolution for better & oE—
FECOnStructlon |n <4% late/after pulses
photon-based
experiments

65000 65500 66500
time (psec)

LArpix

Axdmm
"Qpix” pixels may be viable to cover an

entire DUNE-sized module (~ 10e6)

Fit

Gaussian

Narrowing energy resolution in low-
energy detectors reduces backgrounds

2625
Energy [keV]




Precision

e Horn beams have a complex mixture of flavors and fluxes
 And neutrino interactions are not well understood
 Need new instruments to constrain fluxes, spectra, and cross sections

DUNE Near Detector (“ND-GAr”)
* High-pressure gaseous argon TPC
* Precision reconstruction of final states

 T2K Near Detector (“SFGD”) ; o RS

« 3D reconstruction with scintillator cubes+fibers JE
* Precision reconstruction of final states




Breadth

Underground Ar significantly reduces

Low-E v physics at DUNE can be Ievera ed b e
underground argon+shielding ~—— ‘SlMo” ¥
Neutron shield | - .y | | ;::
reduces = S e - , g JSUSTUSUUTUSTR WO US|
scatters in E. N G i, : e i e S
fididucial
volume : p—
Hybrid Cherenkov/scmtlllatlon detectors would have “best of LARED picasecond timing

both worlds ‘-—-high and low-energy programs
. Theia25 Theia100



Breadth
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Nuclear-recoil equivalent energy [eVnr]
600 800 1000 1200

Power an

South
»o Pole

SPIceCore

g
>
2@,
>
>
=2
5]
o
=
i<}
©
N
=
o

J_l#L;J_Jg_A_A;L,Jg_A_LA_A_A;L
400 600 800 1000 1200 1400
Heat energy [eV]

NTD Location  Revolution Axis
d. '

Figure 28. Schematic and map ARA stations at the South Pole. Figure reproduced from Ref. [661]

ARA radio detection

Cryocube for Ricochet NTD-Ge




Breadth

keV MeV GeV TeV PeV

Solar+reactor+supernova+0vBp+beam+atmospherics

Exabling Techuology m——p
LArTPC 10 ktonne underground argon Extraea | actic sources

neutron shield
Proposed Detector Basic Approach

P-ONE Water Cherenkov > TeV Scale,

| telecomm fibers

| Scale,

| multi-PMTs
Trinity Air-shower Cherenkov 10-1000 PeV | 60° FOV optics

\

\

LArTPC charge+light pixels
ICECUBE-Gen2 (optical) Ice Cherenkov TeV-PeV

Hybrid Cherenkov /scintillator WbLS
fast timing
dichroicons

RET Radar reflection off ionization > 10 Pev In-ice radar reflection
TAMBO (Air-shower) water Cherenkov tanks 1-100 Pev Mountain/valley geography
RNO-G Askaryan emission in ice > PeV Greenland ice,
solar+wind power
autonomous radio detectors
| Omni-directional
| cylindrical antennas
| Mountain geometry,
interferometric
phased arrays
GRAND Geomagnetic air-shower radio > PeV Very large-scale radio array
POEMMA Space-based optical air-shower 10 PeV-40 EeV Wide-FOV
| Schmidt telescopes,
| Cherenkov camera
PUEO Balloon-based radio in ice and air >EV | Realtime
\
\

Scintillator tracking “Milky scintillator”
fiber readout

ICECUBE-Gen2 (radio) Radio array PeV-EeV

BEACON Radio air-shower detection 100 PeV-EeV

LArTPC+Xe photo-ionizing dopants
xenon loading

Coherent v+A scatttering

interfermetric beamforming,
Xilinx RFSoC
GCOs Nested water Cherenkov tanks >10 EeV TBD

MINER [105] phonon detectors Ge AIqO; 0(100g) +radio

NUCLEUS [106-108] | phonon detectors CaWO,,ALO; | O(10g) Table 4: Proposed detectors and enabling technologies for high-energy and ultra-high-energy neutrino
RICOCHET [109] | phonon detectors Ge, Zn Ollkg) detection. Only those experiments not yet past the technical design phase are included.
BULLKID [110] phonon detectors Si 0(10g)

CONNIE [111] CCD sensars Si 0(100g) R Collider Neutrinos

COHERENT [112] cryog. scintillator Csl O(10kg)

CONERENT[112] | HPGe G | Ofiok) - [Tecvlogy [ FASERZ | FASER2 [ AdvD | FLA
COHERENT [112] scintillator Nal O(1ton) N Ot I n C | u d e d h e re m a ny Large aperture SC magnet
CONUS [113] HPGe Ge 0O(1kg) High resolution tracking
Dresder[1 [11]4] HPGe Ge Oglkgg . ;;ircgs"sz:a'igrn";'swn
nuGen [115 HPGe G | Ol d d t d O Siion tr .
igh purity noble liquids
TEXONO [116] HEGE Ge O(lke) e I Ca e V Low noise cold electronics
glEé)lEl [1}7] scintillator ((Se ) OEIOkg; Scintillation %
BC [118 bubble IAr(Xe O(10kg = Optical materials x
NEWS-G [119] gaseous Ne,CH, 0(100g) - eX p e rl I I I e nts ! ) Cold SiPM o
COHERENT [120] liquid noble 1Ar 0O(10kg) Picosec synchronization x
RED100 [121] liquid noble Xe 0(100kg) R Intelligent Trigger x

CHILLAX [122] liquid noble IAr,[Xe 0O(10kg) Table 5: Enabling technologies for the detectors and systems of the far forward physics facility.
NUXE [123] liquid noble IAr,|Xe 0O(10kg)
™



Summary

* New era in development of high-flux neutrino beams

* Many creative ideas for new instrumentation and detectors
* Advancing detector resolution, precision, and breadth
 Very exciting time for future neutrino experiments!




