

Underground Facilities for Cosmic Frontier (UF1)

T. Bolton, P. Decowski, D. Speller

Liaisons from Neutrino Frontier: A. De Roeck, G. Gann

(S. Hertel presenting)

Topics covered by UF1

- Facility needs for future neutrino research performed in underground facilities
 - Long-baseline neutrino facilities (LBNF/DUNE, Hyper-K)
 - Neutrinoless double beta decay
 - Facilities for measurement of neutrinos from natural sources (supernova, solar, atmospheric, background)

Long-baseline neutrino facilities

- The coming decade strategy is 'ballistic':
 - HyperK will begin its full program in ~2028
 - DUNE Phase 1 will start over 2028-2031 (excavation well underway)
- For the US program, upgrade/future strategy after this stage is under discussion.
 - Neutrino frontier science and DUNE planning will drive UF requirements
 - Decisions during this Snowmass period will impact the late 2020's and beyond

Neutrinoless double beta decay facilities

- Ovbb is funded via DOE Nuclear Physics
- Challenges/considerations for 0vbb facilities for future experiments:
 - Space & Depth
 - Space is sufficient for this snowmass period
 - Depth requirements for next-next-gen 0vbb experiments under discussion.
 - Other key concerns for this community:
 - Cryogenic support for experiments
 - Storage, and assembly space
 - Cleanliness, Environmental Monitoring
 - Materials Assay
 - Underground cryogenic test space specifically for R&D

Significant synergies with dark matter direct detection; test facility synergy with QIS

Neutrinos from Natural Sources

- Science Drivers:
 - Probe neutrino sources (stellar, geological, atmospheric, extragalactic, ...)
 - Probe fundamental physics (N_{eff}, masses, flavor physics, new interactions, ...)
- Underground facilities challenges/considerations:
 - Depth
 - Space
 - Large experiment hall
 - Additional space for utilities (liquid handling, purification, cryogenics, etc.)
 - Additional space for underground cryogenic facilities for R&D
 - Geo-neutrinos benefit from diverse locations
- Must plan space now for the next decade+ of projects

UF1 Summary

- UF1 studies facility needs for neutrino science
 - Long-baseline
 - 0vbb
 - Natural sources
- US HEP is investing in long-baseline neutrino science
 - DUNE, located at SURF, will be occupying underground space for the next decade+
- Future neutrino experiments beyond the 2020's will require advanced planning

Underground Facilities for Cosmic Frontier (UF2)

J. Cooley*, S. Hertel, H. Lippincott*, K. Ni, E. Pantic *Liaisons from Cosmic Frontier

Topics covered by UF2

- Facility needs for future cosmic frontier research performed in underground facilities
- Primarily support direct detection dark matter
 - Noble Liquid Detector Experiments
 - Cryogenic Bolometer Experiments
 - 'Other' Dark Matter Detection Technologies

Facilities for noble liquid detector experiments

Physics

- Primary motivation: GeV-TeV mass DM via nuclear recoils
- Sensitivity to many other other physics questions (sub-GeV DM via ionization-only, ER & migdal, solar neutrinos (both NR and ER), 0vbb, solar axions, hidden photons, etc.)
- Future Projects at planning stage
 - Liquid Xenon: a 50-100t observatory XLZD consortium (2028-2033, from CF1)
 - Liquid Underground Argon: a 300t observatory ARGO (2030-2035, from CF1)
- Future Projects at concept stage:
 - DarkSide-LowMass, (1.5t scale detector)
 - ALETHEIA (LHe TPC)

Facilities for noble liquid detector experiments

Challenges in moving to larger scales (I)

- Large Caverns
 - Experiment cavern
 - Underground staging caverns
 - e.g. large underground space for gas storage to avoid cosmogenic activation
- Experiment assembly underground
 - Current generation: Assembled in dedicated low-radon cleanroom, transported underground and installed in clean sealed state
 - Future larger experiments: increased underground assembly needs+efforts
 - Large underground low-radon clean room assembly/staging areas
 - Cranes and vertical space.
 - etc.

Facilities for noble liquid detector experiments Challenges in moving to larger scales (II)

- Heat removal and vertical space for circulation/distillation
 - Heat output from experiment cooling and gas circulation loop
 - Online distillation column (for removal of Radon and other noble radioisotopes)
- Extreme cryogen safety/precautions
 - Human safety (asphyxiation etc.)
 - Enormous expense of target gas itself
- Handling of neutron-veto scintillators (Gd-doped LS or water, others)
 - Not all the underground labs are allowing usage of liquid scintillator,
 - Alternatives include Gd-doped water and liquid argon veto (neutron tagging efficiency to be demonstrated in the current generation experiments)

Related: Facilities for large bubble chambers

Three such experiments being planned: PICO-500 PICO-5T Scintillating Bubble Chamber (ton-scale)

Target liquid at pressure and in a superheated metastable state

Similar to standard noble liquid experiments, in that pressure vessel and cryogenic safety topics require host lab input and interaction.

Facilities for cryogenic bolometer experiments

- Low-mass DM (keV < m_{DM}<GeV) is growing in importance/visibility, we expect modest growth in the number of cryogenic bolometer experiments
- Change in philosophy: Some R&D requires an underground site
 - Traditional strategy: first complete R&D above ground, then deploy underground
 - Current/future considerations:
 - Low-rate 'heat-only events' from instrumental effects better constrained in quiet environment
 - Colder experiments can slower phonon timescales, pileup-limitations above ground
 - Two models for enabling this underground R&D:
 - Earlier deployment of experiment fridge for specific experiments
 - Shared shielded/underground User Facilities are one model to enable this R&D
- Shallow-underground facilities with QIS and CF synergies developing

Facilities for cryogenic bolometer experiments

- Comparatively small in facility footprint, but comparatively sensitive to facility environmental factors
 - Typically based around 3He/4He dilution fridge + shielding/veto
- Facility considerations:
 - Vertical Height: Ceiling height of >4m (for off-the-shelf DF geometries)

 - Depth/overburden: Highly experiment-specific
 Depends on detector backgrounds (aka 'dark counts', aka 'heat-only excess', area of active R&D)
 - Floor vibration: Highly experiment-specific...
 roughly <10^-7 g/sqrtHz at all frequencies
 Some mitigations possible (e.g. seismic platform for SuperCDMS)
 - E&M environment: Highly experiment-specific ...
 Extreme sensitivity to both signals and background noise
 Sources include facility utilities (power, air handling, lighting, etc.) and also neighboring experiments
 Mitigation via filtering + faraday cage, again adds design complexity
 DC magnetic field at <100μT (typical earth field, looser requirements after cooldown is complete)

Facilities for other technologies

- Other DM detection technologies:
 - Skipper CCD (OSCURA)
 - Point-contact Ge (CDEX-100)
 - Low-pressure gas detectors (directional detectors, CYGNUS)
 - Scintillator (SABRE, COSINE-200, others)
 - Superheated water (SNOWBALL)
 - others!

 All of these technologies are (for now) relatively compact in footprint and relatively robust to lab environmental factors

Comments in common to all experiments (Both UF1 & UF2)

Robust onsite computing and network infrastructure

Robust utilities such as electrical power, cooling power, etc.

Lab accessibility for all scientists

Emphasizing **UF4**: Underground material assay facilities are essential. Underground material production, machining, purification, distillation, etc. *can* be essential for specific experiments.

Obvious, but needs mentioning: **facility personnel** are hugely important (Management, engineering, EH&S can all make or break an experiment)

Kamioka

US HEP Cosmic Frontier Underground Program

Current Program:

G2: SuperCDMS , LZ

Dark Matter New Initiatives: TESSERACT , OSCURA

Cosmic Frontier science priorities will drive experiments beyond mid-2020s

Underground facility development is required prior to experimental construction

Kamioka

Snowmass Cos 2022

New Underground Spaces

Possible but temporary occupancy of LBNF cavern space (prior to full DUNE)

- Space: Detector caverns at SURF 4850 level (24m width, 28m height)
- Schedule: Outfitting ends May 2024, subsequent DUNE occupancy date under discussion

SURF is advocating for additional excavation, starting immediately after LBNF excavation

- Cost savings due to already-deployed machinery, personnel, etc.
- Proposals at both 4850 and 7400 foot levels
- Schedule: Excavation could begin ~2027, completed by ~2030.
- See SURF Long-Term Vision Workshop, Sep. 2021 (<u>https://indico.sanfordlab.org/event/26/</u>)

SNOLAB also has proposals for significant expansion

- Proposals for both for gas storage space (e.g. for ARGUS project) and experimental space.
- Conceived as two expansions, requiring 5y timescale each.
- Intermediary storage for the fraction or all of ARGUS 400t of underground argon possible at the lesser depths.

UF2 Summary

- Multiple new DM experiments are expected and being planned, while facilities are currently 'full'. Clear need for additional underground space, tailored to needs beyond the late 2020s
- This underground space should specifically include
 - Both large spaces for large experiments (liquid noble) and small spaces for smaller experiments (cryogenic bolometer, 'other')
 - Large radon-free clean rooms for detector assembly and installation for the next generation experiments
 - Large areas for staging (e.g., gas storage) and experiment utilities (e.g. pumps, distillation)