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= Next-generation searches are starting
= Upgrades to existing experiments
= New methods with enhanced sensitivity
= Access to new parameter spaces (leptonic and hadronic)

= Major advances will take place in the next decade
» Implementation of advanced quantum control
= New measurement approaches
= Access to exotic nuclei
» These are getting started!



10% molecules

100 s coherence time
Heavy, deformed nucleus
Quantum control

Robust error rejection
Two weeks integration




10% molecules

100 s coherence time
Heavy, deformed nucleus
Quantum control

Robust error rejection
Two weeks integration

~PeV-scale CP-violating physics @ 1 loop
~100 TeV-scale CP-violating physics @ 2 loops
Both leptonic and hadronic sectors

Extreme precision, 8,¢p < 10~
~10 year time scales



10% molecules

100 s coherence time
Heavy, deformed nucleus
Quantum control

Robust error rejection
Two weeks integration

~PeV-scale CP-violating physics @ 1 loop
~100 TeV-scale CP-violating physics @ 2 loops
Both leptonic and hadronic sectors

Extreme precision, 6,¢p < 1071

~10 year time scales

!

Future orders-of-magnitude
improvements from quantum-
enhanced metrology, highly
exotic nuclei, ...

+ ~5-10 year time scale?



10% molecules

100 s coherence time
Heavy, deformed nucleus
Quantum control

Robust error rejection
Two weeks integration

~PeV-scale CP-violating physics @ 1 loop
~100 TeV-scale CP-violating physics @ 2 loops
Both leptonic and hadronic sectors

Extreme precision, 6,¢p < 1071

~10 year time scales

Future orders-of-magnitude
improvements from quantum-
enhanced metrology, highly
exotic nuclei, ...

+ ~5-10 year time scale?

« This is just one specific approach as a
motivating example

« There are many complementary
approaches which can leverage these
advances

« How can we realize this experiment?
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What will it take to access CPV?

BSM Phenomenology Particle Theory
Molecular spectroscopy \ o Quantum control

Y Nuclear structure

Sensitive Detection —

QIS

Radiochemistry —

Beam facilities / - N ]
/ y Physical chemistry
Molecular production

/ \ Atomic/molecular structure
Laser cooling/trapping

Relativistic quantum chemistry

Again, this is just a particular example,

but many of the challenges are shared 10
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Looking Ahead
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