Fundamental Symmetries with Atoms, Molecules, and Optics (AMO)

Nick Hutzler

Caltech
State of the field

- Molecules have been used to search for the electron electric dipole moment with high precision
 - Already probing the ~50 TeV (~2 TeV) scale for CPV physics at 1 (2) loops
 - ~100x EDM sensitivity improvement since last Snowmass
 - Leverages combination of intrinsic amplification of CPV moments, coherent quantum control, and robustness against systematics

- Next-generation searches are starting
 - Upgrades to existing experiments
 - New methods with enhanced sensitivity
 - Access to new parameter spaces (leptonic and hadronic)

- Major advances will take place in the next decade
 - Implementation of advanced quantum control
 - New measurement approaches
 - Access to exotic nuclei
 - These are getting started!
10^6 molecules
100 s coherence time
Heavy, deformed nucleus
Quantum control
Robust error rejection
Two weeks integration

\simPeV-scale CP-violating physics @ 1 loop
\sim100 TeV-scale CP-violating physics @ 2 loops
Both leptonic and hadronic sectors
Extreme precision, $\theta_{QCD} \lesssim 10^{-14}$
\sim10 year time scales

Future orders-of-magnitude improvements from quantum-enhanced metrology, highly exotic nuclei, ... + \sim5-10 year time scale?

- This is just one specific approach as a motivating example
- There are many complementary approaches which can leverage these advances
- How can we realize this experiment?
Progress in the last ~year

- Long spin coherence times in optical traps
- Precision spectroscopy of radioactive molecules
- Creation, trapping, cooling, control of radioactive molecular ions
- Quantum-controlled ultracold molecules

PolyEDM Collaboration
Fan et al., PRL 126, 023002 (2021)
Doyle Group @ Harvard

Udrescu et al., PRL 127, 033001 (2021)
Zheng et al., arXiv:2207.08140 (2022)
What will it take to access CPV?

BSM Phenomenology

Molecular spectroscopy

Sensitive Detection

Radiochemistry

Beam facilities

Molecular production

Laser cooling/trapping

Particle Theory

Quantum control

Nuclear structure

QIS

QCD

Physical chemistry

Atomic/molecular structure

Relativistic quantum chemistry

And more...

Again, this is just a particular example, but many of the challenges are shared.
Looking Ahead

- All of the pieces are there
 - *Not* the case at last Snowmass
- Need sustained support and coordination
 - Theory and experiment
 - AMO, HEP, NP, QIS, chemistry, beam facilities, ...
- Complementary approaches are required
 - Broad parameter space!
 - Multiple AMO systems
 - srEDM for nucleons/nuclei
- Most new AMO CPV experiments are multi-PI, multi-institution, multi-year
 - Necessitated by both scale and complexity
 - This is *not* the “traditional” AMO operating condition
 - Challenges most existing AMO support and coordination models

Orders-of-magnitude gains in energy reach are possible in next 10 years, and beyond

Long-term roadmap includes quantum-enhanced metrology, extremely exotic nuclei, and more