# What's new about Machine Learning?



Daniel Whiteson, UC Irvine
Jul 2022 / Snowmass in Seattle

## It's everywhere!



#### What's new about ML?



What society thinks I do



What my friends think I do



What other computer scientists think I do



What mathematicians think I do



What I think I do



What I actually do

## Early days of HEP



EARLY PHYSICISTS

#### ML in HEP is not new



Fig. 2. (a) The output  $\eta$  of the neural network b tag for radiative returns to the Z for 161 GeV  $q\bar{q}$  Monte Carlo (histogram) compared to the data at 161 GeV (points). The shaded region shows the contribution from generated b-jets. (b) The performance of the neural network b tag (solid line) for Monte Carlo events, presented in terms of the efficiency for identifying b-jets versus the efficiency for rejecting light quark jets. The performance of the single most powerful b tagging input variable to the neural network is shown for comparison (dashed curve).

Is modern ML something new, or just more of the same?

# Is modern ML something new, or just more of the same?



Is recent (> ~2013 deep learning moment) ML in particle physics "more of the same" or "qualitatively something new".

# Is modern ML something new, or just more of the same?



Is recent (> ~2013 deep learning moment) ML in particle physics "more of the same" or "qualitatively something new".

| More of the same          | 39.7% |
|---------------------------|-------|
| More, not the same        | 39.7% |
| It's complicated(comment) | 11%   |
| ML is nonsense            | 9.6%  |

73 votes · Final results

# Is modern ML something new, or just more of the same?



Is recent (> ~2013 deep learning moment) ML in particle physics "more of the same" or "qualitatively something new".



73 votes · Final results

## Outline

1. Much much more of the same

2. Something qualitatively new

## Traditional role of ML

Why do we need machine learning?

## Traditional role of ML

Why do we need machine learning?



## Making a new particle



## Backgrounds

THE PROBLEM IS, THERE'S LOTS OF OTHER IT'S ONE OF THE MOST WAYS YOU CAN MAKE TWO BOTTOM QUARKS: COMMON THINGS TO MAKE. JORGE CHAM @ 2012 ALL WE CAN SEE ARE THE DECAY PRODUCTS. AND WHAT YOU WANT TO KNOW IS .. THE THING IS, WE CAN'T SEE INSIDE DID THE THESE REACTIONS. HIGGS EXIST?

## Neyman-Pearson

NP lemma says that the best statistic is the likelihood ratio:

$$rac{P(x|H_1)}{P(x|H_0)} > k_{lpha}$$
 data theory

(Gives smallest missed discovery rate for fixed false discovery rate)

## Functional space

All functions

Global Optimum

## No problem

If you can calculate:

$$\frac{P(x|H_1)}{P(x|H_0)} > k_{\alpha}$$

For which you need:

## In general

We have a good understanding of all of the pieces

Do we have

P(data | theory)?



## In general



#### Darn

We can't calculate

P(data | theory)

.... but we can simulate it!



**Hurricane Dorian Forecast Track and Intensity** 







weather@sfwmd.gov 28-Aug 08:06EDT

## The nightmare



"data" is a 100M-d vector!

## The nightmare



## The nightmare

```
p_{T}(\mu) = 18 \text{ GeV}
p_{T}^{vis}(\tau_{h}) = 26 \text{ GeV}
m_{vis}(\mu, \tau_{h}) = 47 \text{ G}
m_{T}(\mu, E_{T}^{miss}) = 8 \text{ G}
E_{T}^{miss} = 7.6 \text{ eV}
```

#### We wouldn't need ML if we could:

- Express the likelihood of seeing our data
- Access infinite computing resources
- Develop infinitely-fast simulation



## Summary statistics

| Raw | Sparsified | Reco | Select | Ana |
|-----|------------|------|--------|-----|
| 1e7 | 1e3        | 100  | 50     | 1   |



We don't need to analyze the raw data

...If we could summarize it perfectly

## Summary statistics

| Raw | Sparsified | Reco | Select | Ana |
|-----|------------|------|--------|-----|
| 1e7 | 1e3        | 100  | 50     | 1   |



#### We wouldn't need ML if we could:

- Express the likelihood of seeing our data
- Access infinite computing resources
- Develop infinitely-fast simulation
- Derive perfect summary statistics

...If we could summarize it perfectly

Standard Model

## Summary statistics



## Functional space

All functions

Global Optimum

## How complex?

Essentially a functional fit with many parameters



Single hidden layer

In theory any function can be learned with a single hidden layer.

Input

Hidden

## How complex;

Essentially a functional fit with many parameters



Single hidden layer

In theory any function can be learned with a single hidden layer.

But might require very large hidden layer

Input

Hidden

## Shallow space

All functions



Global Optimum

## Neural Networks

Essentially a functional fit with many parameters



#### **Consequence:**

Networks are not good at learning non-linear functions. (like invariant masses!)

#### In short:

Couldn't just throw data at NN.

Input

Hidden

## Search for Input

No low-level inputs

Limited input size

Painstaking search through input space.

| Variable                                                             | VBF                        |                                        | Boosted                    |                            |                            |                            |
|----------------------------------------------------------------------|----------------------------|----------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
|                                                                      | $	au_{ m lep}	au_{ m lep}$ | $	au_{\mathrm{lep}}	au_{\mathrm{had}}$ | $	au_{ m had}	au_{ m had}$ | $	au_{ m lep}	au_{ m lep}$ | $	au_{ m lep}	au_{ m had}$ | $	au_{ m had}	au_{ m had}$ |
| $m_{\tau\tau}^{\mathrm{MMC}}$                                        | •                          | •                                      | •                          | •                          | •                          | •                          |
| $\Delta R(\tau, \tau)$                                               | •                          | •                                      | •                          |                            | •                          | •                          |
| $\Delta\eta(j_1,j_2)$                                                | •                          | •                                      | •                          |                            |                            |                            |
| $m_{j_1,j_2}$                                                        | •                          | •                                      | •                          |                            |                            |                            |
| $rac{\eta_{j_1} 	imes \eta_{j_2}}{p_{\mathrm{T}}^{\mathrm{Total}}}$ |                            | •                                      | •                          |                            |                            |                            |
| $p_{\mathrm{T}}^{\mathrm{Total}}$                                    |                            | •                                      | •                          |                            |                            |                            |
| sum p <sub>T</sub>                                                   |                            |                                        |                            |                            | •                          | •                          |
| $p_{\mathrm{T}}(\tau_1)/p_{\mathrm{T}}(\tau_2)$                      |                            |                                        |                            |                            | •                          | •                          |
| $E_{\rm T}^{\rm miss} \phi$ centrality                               |                            | •                                      | •                          | •                          | •                          | •                          |
| $x_{\tau 1}$ and $x_{\tau 2}$                                        |                            |                                        |                            |                            |                            | •                          |
| $m_{\tau \tau, j_1}$                                                 |                            |                                        |                            | •                          |                            |                            |
| $m_{\ell_1,\ell_2}$                                                  |                            |                                        |                            | •                          |                            |                            |
| $\Delta\phi_{\ell_1,\ell_2}$                                         |                            |                                        |                            | •                          |                            |                            |
| sphericity                                                           |                            |                                        |                            | •                          |                            |                            |
| $p_{\mathrm{T}}^{\ell_1}$                                            |                            |                                        |                            | •                          |                            |                            |
| $m{p}_{\mathrm{T}}^{f_1}$                                            |                            |                                        |                            | •                          |                            |                            |
| $E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}^{\ell_2}$             |                            |                                        |                            | •                          |                            |                            |
| $m_{\mathrm{T}}$                                                     |                            | •                                      |                            |                            | •                          |                            |
| $\min(\Delta \eta_{\ell_1 \ell_2, \text{jets}})$                     | •                          |                                        |                            |                            |                            |                            |
| $j_3 \eta$ centrality                                                | •                          |                                        |                            |                            |                            |                            |
| $\ell_1 \times \ell_2 \eta$ centrality                               | •                          |                                        |                            |                            |                            |                            |
| $\ell \eta$ centrality                                               |                            | •                                      |                            |                            |                            |                            |
| $\tau_{1,2} \eta$ centrality                                         |                            |                                        | •                          |                            |                            |                            |

## Deep networks



Hidden Hidden Hidden

## Expanding space



# Real world applications



**Head turn:** DeepFace uses a 3-D model to rotate faces, virtually, so that they face the camera. Image (a) shows the original image, and (g) shows the final, corrected version.

## Low level data

### Calorimeter pixels



### Lists of tracks



# Networks beat experts



1603.09349

# Summary statistics

RawSparsifiedRecoSelectAna1e71e3100501



Networks can handle higher dimensionality

And lower-level data

# The new frontier

### Expertise is not obsolete!

If you know something about the problem, don't use a completely general solution.

Engineer your network structure!





e.g, network structures which respect symmetries

# Constraining space



## Outline

1. Much much more of the same

2. Something qualitatively new

# Graph networks

### Represent structured data





## Generative models

### Do more than classify

### Generate data from noise



1712.10321

Optimal transport: new ways to compare distributions

2101.08944: Learn the detector from data!

# Away from supervision



# Background fitting

### Away from ad-hoc background shapes:





# ML for design

### Optimize everything

#### **Automatic Differentiation**

Numerical gradients  $\Delta L/\Delta \phi$  hopeless in trillion-D, need exact gradients  $\partial L/\partial \phi$ 

Automatic Differentiation: careful application of chain rule to computer programs

PYTORCH



... but also C++, Fortran, ...

**TensorFlow** 



$$y = f(x)$$
  $dy = J_f dx$ 

$$J_f = \frac{\partial(y_1, \dots, y_m)}{\partial(x_1, \dots, x_n)}$$

L. Heinrich

See also: 1806.04743

# ML for Theory!

### How do we search large spaces?



String theory applications: 1707.00655,1903.11616

# Summary

### Modern ML

Much more flexible and capable Tackling previously intractable problems

### Many creative new ideas

Widening in scope
Attacking new problems