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Message
• ML can, is, and will improve (the way we do) physics


• ML spans traditional boundaries 


• We should not stovepipe in traditional silos


• Seemingly unrelated topics closely related and benefit from crosstalk


• Promote interdisciplinary exploration and teams


• Inside and outside our particle physics community


• ML techniques and research growing rapidly from many sources
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Rest of talk outline

• Machine learning for particle physics


• Particle physics for machine learning
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Disclaimer: 

Examples throughout the talk based primarily on personal familiarity.  


There are many (many!) other instances of exciting work.


https://iml-wg.github.io/HEPML-LivingReview/



Machine learning for particle physics
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Why should we care about (deep) ML?
• Improves our science


• See Daniel Whiteson’s talk on physics and ML in the deep learning era


• See David Shih’s talk on areas of physics opportunities for ML 


• We are not alone in deploying ML

• Training: it can be a valuable skill to  

develop for early career scientists


• Conversely, many early career scientists  
are enthusiastic about developing  
machine learning for physics - it is pervasive
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MLOps

arXiv:2205.02302


https://indico.fnal.gov/event/22303/contributions/245344/
https://indico.fnal.gov/event/22303/contributions/245346/
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Traversing traditional boundaries

• Algorithm-external:  
Domain cross-over


• Task-based


• Data representations


• Experimental system and data 
processing constraints 


• Software, tools, education, 
training
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• Algorithm-internal:  
Cross-cutting ML themes


• Physics-constraints, 
interpretability 


• Domain adaptation, fault 
tolerance, uncertainty 
quantification 


• Efficient, resource-constrained
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• Algorithm-internal:  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• Physics-constraints, 
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Image source

https://towardsdatascience.com/coding-deep-learning-for-beginners-types-of-machine-learning-b9e651e1ed9d
https://towardsdatascience.com/coding-deep-learning-for-beginners-types-of-machine-learning-b9e651e1ed9d


Reinforcement , active learning
• RL less widely-used than (un)supervised


• Surrogate modeling, digital twins important 

• Applications studied for accelerator control - 
beyond standard PID loops


• Similar techniques are being explored for:


• Real-time adaptive collider triggers


• Self-driving telescopes


• Automated sensor/detector construction 


• Gravitational wave sensor denoising 


• …
10

Type Benchmark
Input Pipeline Real-time

Misc. Req.
Baseline Model

Precision Rate Latency Parameters

Supervised Learning Jet Classification 16b 150 ns 1µs - 4,389
Unsupervised Learning Sensor Data Compression 9b 25 ns 100 ns area, power (65 nm) 2,288
Reinforcement Learning Beam Control 32b 5 ms 5 ms - 34,695

Table 2. Summary of constraints for three benchmark tasks and number of parameters for the benchmark baseline models.

Power supply 
control system

Programmable 
logic

Booster
Synchrotron

Control signal

Environment 
feedback

Bending magnet 
in-situ measurement

Figure 4. Synchrotron magnet power supply control system for the
Fermilab Booster Ring, adapted from (St. John et al., 2021)

framed as a reinforcement learning benchmark task. Be-
cause an accurate and reliable simulation of the synchrotron
is not possible from first principles, a “virtual” accelerator
complex surrogate model has been developed to emulate
the actual physical system. This surrogate model will serve
as the environment with which our reinforcement learning
benchmark interacts.

Dataset A Booster synchrotron power supply regulation
dataset provides cycle-by-cycle time series of readings and
settings from the most relevant devices available in the Fer-
milab control system. This data was drawn from the time
series of a select subset of the roughly 200,000 entries that
populate the device database of the accelerator control net-
work. Data was sampled at 15 Hz for 54 devices pertaining
to the system’s regulation. Because of how data is trans-
mitted and communicated, inputs are 32-bit floating-point
numbers, but the sensor source’s precision is, in many cases,
less.

Real-time System Constraints The Booster ramping cy-
cle rate is 15 Hz, which sets the control loop’s time scale.
We define the algorithm latency requirement as 5 ms for this
benchmark due to data movement latency.

Performance Metrics The primary performance metric
in this reference benchmark is the reward, R, defined as the
negative of the error with respect to the reference expected
current in the Booster, R = �|�Imin|.

Baseline Model(s) There are two models involved in this
benchmark task: (1) the surrogate model for the Booster
accelerator and (2) the online agent, which is correcting the
reference magnet power supplies in real-time. The surrogate
model is fixed in this benchmark task and plays the role of
the environment in this reinforcement learning task. The
long short-term memory (LSTM) (Hochreiter & Schmidhu-
ber, 1997) surrogate model inputs are the previous 150-time
steps of the top 5 causal variables—variables related to
the synchrotron and downstream accelerator currents and
current errors concerning reference. The model has approxi-
mately 1.5 million parameters.

The benchmark online agent running in the Arria10 system-
on-chip (SoC) is a multilayer perceptron taking the five
input parameters, has three hidden layers (128, 128, 128)
and approximately 35,000 parameters. The architecture is a
fully-connected neural network because the 5 inputs are al-
ready selected expert variables. The deep Q-network (Mnih
et al., 2013; 2015) has 7 discrete outputs and maximizes the
reward, R, defined above. The reward metric is measured as
a function of RL episode and is presented in Fig. 7 (bottom)
of (St. John et al., 2021).

The benchmark model weights and biases are quantized to
20 total bits in a fixed-point representation in hardware. The
lowest latency implementation of the model is implemented
for an Intel Arria10 SoC with a resource usage of 53 DSPs,
238 BRAMs, 672 MLABs, 43.3 kALMs, 92.6 kFFs. The
algorithm has a latency of 3.9µs.

4 DISCUSSION AND OUTLOOK

This position paper highlights both the need and challenges
for developing machine learning (ML) benchmarks for edge
applications in science. Given the demise of Moore’s law
and Dennard scaling (Dennard et al., 1974; Esmaeilzadeh
et al., 2011) and advances in scientific instrumentation re-
sulting in rapidly growing data rates, edge computing is
becoming exceedingly crucial for reducing and filtering
scientific data in real-time to accelerate science experimen-
tation and enable more profound insights. There are chal-
lenges in building well-constrained benchmark tasks with
enough specification to be generically applicable and ac-
cessible simultaneously. However, we can use these edge
applications in extreme data processing environments to ad-
vance many scientific domains and enable the development

arXiv:2011.07371



Data representations - graphs
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slides, Daniel Murnane

ExaTrkX 

https://indico.cern.ch/event/1104699/attachments/2446264/4196018/GNN%20for%20HL-LHC.pdf
https://exatrkx.github.io/
https://indico.cern.ch/event/1104699/attachments/2446264/4196018/GNN%20for%20HL-LHC.pdf
https://exatrkx.github.io/


Domain adaptation, fault tolerance, etc.
• Connected to persistent set of 

challenges when applying ML, e.g.


• How do ML model X works at a 
different energy, mass, region, etc.?


• Physics-based simulation is a uniquely 
powerful tool, but…


• Do we understand data vs MC 


• Can we learn directly from the data?


• semi-/self-supervised learning


• What happens when you see 
something you don’t understand?

12

arXiv:2002.07953
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Anomaly detection
• Large topic area with broad-ranging 

applications


• monitoring/validation to new physics


• E.g. LHC olympics (ML4Jets) & Dark 
Machines challenges


• Rich inter-experiment effort with 
extensive theory-experiment 
collaborations


• Highlights the power of public datasets 
and benchmarks as a way to catalyze 
progress
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Particle physics for machine learning
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ML out in the world
• ML is growing rapidly everywhere


• Development driven by academia and industry, largely outside of 
particle physics


• We cannot (and should not) ignore this! 


• Why? 


• Bring new expertise, knowledge, and resources to bear on our 
challenges


• Contribute to the advancement of machine learning itself and other 
related applications

15



Interdisciplinary collaboration
• How do we capture the interest of non-

HEP collaborators? 


• Straightforward way: the physics 
mission is beautiful and engaging!  


• Find unique aspects for our science 
that could push the bounds of ML 
research

• Because sometimes a computer vision 

problem is a computer vision problem whether 
its in industry or physics (and that’s ok!!)

16

nvidia link

https://developer.nvidia.com/blog/scaling-inference-in-high-energy-particle-physics-at-fermilab-using-nvidia-triton-inference-server/
https://developer.nvidia.com/blog/scaling-inference-in-high-energy-particle-physics-at-fermilab-using-nvidia-triton-inference-server/


Physics for machine learning
• Some thrusts and themes we’ve found that resonate 

we’d love to hear others’ experiences!


• Uncertainty quantification - scientific rigor requires more formal and 
quantitative understand of uncertainties than other (industry) applications


• Physics-informed/constrained ML - underlying physical laws, symmetries, 
or constraints to improve models (next slide) or infer physical parameters 
(simulation-based inference) - under larger umbrella of inductive bias


• Fast/efficient ML - dataset sizes and data rates are in physics experiments 
are uniquely massive w.r.t. industry and other scientific domains

17



Physics-constrained ML
• Convolutional neural networks were a paradigm-shifting concept for deep 

learning and computer vision


• Leverages spatial symmetries 

18

� RECONSIDERING EVALUATION METRICS 9

Figure 2: The accuracy of various neural networks in performing top quark tagging, as a function of a
Lorentz boost applied to the testing data reference frame (parametrized with V = {/2). The simple, 4-layer
fully-connected network is not robust against Lorentz boosts, so the classification accuracy su�ers as the
testing data has a hidden Lorentz boost applied. While this can be potentially mitigated by careful training
data augmentation – in this case by applying random Lorentz boosts to training events – an equivariant
architecture like the Lorentz Group Network [14] can provide for robustness without the need for any special
training procedure. Decreased accuracy at relatively high boosts for LGN is due to numerical precision
limits of that particular design. Network training and testing was performed using the top-tagging reference
dataset [38], and each curve is averaged over three separately trained network instances.

• Deep understanding of physical laws and 
constraints including sophisticated simulations 
that encode our physics knowledge

• See for example, white paper on “Symmetry Group 

Equivariant Architectures for Physics” [arXiv: 2203.06153]


• Potential benefits: model size/complexity, interpretability, 
sample efficiency, generalizability, faithfulness to physical 
laws



Fast, efficient ML
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In this community review report, we discuss applications and techniques for fast

machine learning (ML) in science—the concept of integrating powerful ML methods

into the real-time experimental data processing loop to accelerate scientific discovery.

The material for the report builds on two workshops held by the Fast ML for

Science community and covers three main areas: applications for fast ML across a

number of scientific domains; techniques for training and implementing performant

and resource-efficient ML algorithms; and computing architectures, platforms, and

technologies for deploying these algorithms. We also present overlapping challenges

across the multiple scientific domains where common solutions can be found. This

community report is intended to give plenty of examples and inspiration for scientific

discovery through integrated and accelerated ML solutions. This is followed by a

high-level overview and organization of technical advances, including an abundance of

pointers to source material, which can enable these breakthroughs.

Keywords: machine learning for science, big data, particle physics, codesign, coprocessors, heterogeneous

computing, fast machine learning

More discussion on this in IF04, IF07, 
CompF03, and CompF04 sessions!

DRAFTFigure 1: Comparison across various high-energy experiments and industry facili-
ties of the streaming data rate, in units of bytes per second and the latency require-
ments in seconds. The area of each bubble indicates the total annual data volume.
From [151]

4 Community Tools, Standards, Resources and Management

The previous sections make it clear that ML is emerging as a powerful tool for HEP which can
tackle important challenges facing the field as the volume and complexity of experimental data,
as well as the volume and complexity of computational theory calculations, grows dramatically.
Unfortunately, ML models are often computationally expensive, especially in training, and will
require significant resources in terms of providing sufficient computing hardware as well as
dynamic and flexible software which take advantage of industrial efforts but remain adaptable
to the specific features of HEP problems.

4.1 Current Status and Needs

Machine learning plays an important role in many different aspects of HEP, including collider,
neutrino, dark matter, lattice QCD as well as astrophysics, and in many different contexts, in-
cluding triggering, reconstruction and data analysis. Figure 1 shows a comparison of the data
rates versus the latency requirements for some of these systems, demonstrating the extraordi-
narily wide range of settings.

Collider, Neutrino, Astrophysics: The needs and opportunities of these experiments are
explored in detail in Ref [151], and are summarized here. These communities have fully em-
braced the use of ML in nearly every aspect of experimental operation, including triggering,
data quality monitoring, reconstruction and analysis. These activities span a very wide range
of computational needs, including low-latency applications such as triggering and latency-
tolerant applications such as offline analysis. With the broadening application of these tools
comes a rising computational cost, which will require more than simply additional CPU re-
sources. Use of GPUs has become standard, and special contexts will require FPGAs (for trig-
ger) and ASICs (for radiation-hard environments). The broader use of ML in industry and
academia is fueling rapid innovation in hardware, which may soon lead to new technologies
such as Tensor PUs, Intelligence PUs and photon-based processing units [151]. On the other
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Deiana et al. Fast Machine Learning in Science

TABLE 2 | Domains and practical constraints: systems are broadly classified as soft (software-programmable computing devices: CPUs, GPUs, and TPUs) and custom

(custom embedded computing devices: FPGAs and ASICs).

Domain Event rate Latency Systems Energy-constrained

Detection and event reconstruction No

LHC and intensity frontier HEP 10s Mhz ns-ms Soft/custom

Nuclear physics 10s kHz ms Soft

Dark matter and neutrino physics 10s MHz µs Soft/custom

Image processing

Material synthesis 10s kHz ms Soft/custom

Scanning probe microscopy kHz ms Soft/custom

Electron microscopy MHz µs Soft/custom

Biomedical engineering kHz ms Soft/custom Yes (mobile settings)

Cosmology Hz s Soft

Astrophysics kHz–MHz ms-us Soft Yes (remote locations)

Signal processing

Gravitational waves kHz ms Soft

Health monitoring kHz ms Custom Yes

Communications kHz ms Soft Yes (mobile settings)

Control systems

Accelerator controls kHz ms–µs Soft/custom

Plasma physics kHz ms Soft

TABLE 3 | Classification of domains and their system requirements with respect to real-time needs.

Domain Real-time data reduction Real-time analysis Closed-loop control

Detection/Event reconstruction

LHC Yes Yes No

Nuclear physics Yes No No

Dark matter-neutrino Yes No No

Image processing

Material synthesis Yes Yes Yes

Scanning probe microscopy Yes

Electron microscopy Yes

Biomedical engineering Yes

Cosmology Yes No No

Astrophysics Yes No No

Signal processing

Gravitational waves Yes No No

Health monitoring Yes Yes Yes

Communications Yes Yes Yes

Control systems

Accelerator controls Yes Yes Yes

Plasma physics Yes Yes Yes

the memory hierarchy. In the majority of the use cases, the
latency involved with moving data from the front-end (detectors,
microscopes, sensors, etc.) dominates the total latency. One of the
prominent performance constraints is related to the utilization
and subsequent latency of the network that links the front-end
with the back-end. Current limitations on the speed of data
movement renders the CPU/GPU cluster-based systems unable
to meet the real-time requirements.

3.2.2. Custom Embedded Computing Devices
As the latency and throughput constraints are coupled with
challenging practical energy constraints, efforts have been
directed toward specialized computing systems to address the
hard real-time needs. An increasingly attractive paradigm is to
design components that are finely optimized for specific steps in
the data capture workflow. These components can be mapped
onto FPGA devices or they can be designed and manufactured

Frontiers in Big Data | www.frontiersin.org 22 April 2022 | Volume 5 | Article 787421



Fast, efficient ML
Unique particle physics challenges necessitates  
novel solutions, techniques, and tools

E.g. community collaboration with computer scientists, engineers in academia & industry (Google, 
AMD/Xilinx, MLCommons,…), among others on open-source tools beyond physics
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OPEN-SOURCE FPGA-ML CODESIGN FOR THE MLPERF™ TINY
BENCHMARK
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ABSTRACT
We present our development experience and recent results for the MLPerf™ Tiny Inference Benchmark on
field-programmable gate array (FPGA) platforms. We use the open-source hls4ml and FINN workflows, which
aim to democratize AI-hardware codesign of optimized neural networks on FPGAs. We present the design and
implementation process for the keyword spotting, anomaly detection, and image classification benchmark tasks.
The resulting hardware implementations are quantized, configurable, spatial dataflow architectures tailored for
speed and efficiency and introduce new generic optimizations and common workflows developed as a part of this
work. The full workflow is presented from quantization-aware training to FPGA implementation. The solutions
are deployed on system-on-chip (Pynq-Z2) and pure FPGA (Arty A7-100T) platforms. The resulting submissions
achieve latencies as low as 20µs and energy consumption as low as 30µJ per inference. We demonstrate how
emerging ML benchmarks on heterogeneous hardware platforms can catalyze collaboration and the development
of new techniques and more accessible tools.

1 INTRODUCTION

Efficient implementations of machine learning (ML) algo-
rithms in dedicated hardware devices at the edge, or near
sensor, offer multiple advantages. Edge processing and
data compression can greatly reduce downstream data rates
and the energy required for data movement. Furthermore,
real-time data processing and interpretation can accelerate
decision making, hypothesis testing, and enable just-in-time
interventions. These edge ML tasks can have a significant
impact on a broad range of applications from internet of
things (IoT) to Industry 4.0 (Kagermann et al., 2013) and
new experimental methods for scientific discovery (Deiana
et al., 2022).

To enable broader adoption of these technologies, we
present our solutions for the open division of the
MLPerf™ Tiny Inference Benchmark v0.7. MLPerf Tiny
has two divisions for submitting results: a stricter closed

1Heidelberg University, Heidelberg, Germany 2Columbia Uni-
versity, New York, NY, USA 3University of California San Diego,
La Jolla, CA, USA 4European Organization for Nuclear Research
(CERN), Geneva, Switzerland 5Fermi National Accelerator Labo-
ratory, Batavia, IL, USA 6University of Washington, Seattle, WA,
USA 7Harvard University, Cambridge, MA, USA 8AMD Adaptive
and Embedded Computing Group (AECG) Labs, Dublin, Ireland.
Correspondence to: Javier Duarte <jduarte@ucsd.edu>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2022. Copyright 2022 by the author(s).

division and a more flexible open division, which allows
submitters to alter ML model implementations and training
workflows. We participated in the open division to demon-
strate the advantages of hardware-AI codesign.

The hls4ml (Duarte et al., 2018; Fahim et al., 2021) and
FINN (Umuroglu et al., 2017; Blott et al., 2018b;a) teams
aim to democratize low-power, tiny (tinyML Foundation,
2019; Banbury et al., 2020), accelerated ML by releasing
accessible tools for the codesign of optimized neural net-
works on field-programmable gate arrays (FPGAs). The
hls4ml workflow originates from the Fast Machine Learn-
ing for Science community, which focuses on developing
tools for scientific applications. FINN is an open-source
project from AMD that enables the exploration of efficient
ML acceleration on FPGAs. These jointly developed solu-
tions are the product of an ongoing collaboration between
the FINN and hls4ml developers with the goal of making
FPGA-accelerated tiny ML broadly available.

There are a number of unique features of the hls4ml and
FINN workflows. Solutions support extreme flexibility in
data type precision. In fact, each solution from the team
uses a different precision, from 1- to 12-bit operations.
The resulting hardware implementations are configurable,
spatial, dataflow architectures that are tailored for speed
and efficiency. The code, from end-to-end, is open-source
and freely available including tools for design space explo-
ration and the final implementations. The workflow includes
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Ps and Qs: Quantization-Aware
Pruning for Efficient Low Latency
Neural Network Inference
Benjamin Hawks1, Javier Duarte2, Nicholas J. Fraser3, Alessandro Pappalardo3,
Nhan Tran1,4* and Yaman Umuroglu3

1Fermi National Accelerator Laboratory, Batavia, IL, United States, 2University of California San Diego, La Jolla, CA, United States,
3Xilinx Research, Dublin, Ireland, 4Northwestern University, Evanston, IL, United States

Efficient machine learning implementations optimized for inference in hardware have wide-
ranging benefits, depending on the application, from lower inference latency to higher data
throughput and reduced energy consumption. Two popular techniques for reducing
computation in neural networks are pruning, removing insignificant synapses, and
quantization, reducing the precision of the calculations. In this work, we explore the
interplay between pruning and quantization during the training of neural networks for ultra
low latency applications targeting high energy physics use cases. Techniques developed
for this study have potential applications across many other domains. We study various
configurations of pruning during quantization-aware training, which we term quantization-
aware pruning, and the effect of techniques like regularization, batch normalization, and
different pruning schemes on performance, computational complexity, and information
content metrics. We find that quantization-aware pruning yields more computationally
efficient models than either pruning or quantization alone for our task. Further,
quantization-aware pruning typically performs similar to or better in terms of
computational efficiency compared to other neural architecture search techniques like
Bayesian optimization. Surprisingly, while networks with different training configurations
can have similar performance for the benchmark application, the information content in the
network can vary significantly, affecting its generalizability.

Keywords: pruning, quantization, neural networks, generalizability, regularization, batch normalization

1 INTRODUCTION

Efficient implementations of machine learning (ML) algorithms provide a number of advantages for
data processing both on edge devices and at massive data centers. These include reducing the latency
of neural network (NN) inference, increasing the throughput, and reducing power consumption or
other hardware resources like memory. During the ML algorithm design stage, the computational
burden of NN inference can be reduced by eliminating nonessential calculations through a modified
training procedure. In this paper, we study efficient NN design for an ultra-low latency, resource-
constrained particle physics application. The classification task is to identify radiation patterns that
arise from different elementary particles at sub-microsecond latency. While our application domain
emphasizes low latency, the generic techniques we develop are broadly applicable.

Two popular techniques for efficient ML algorithm design are quantization and pruning.
Quantization is the reduction of the bit precision at which calculations are performed in a NN
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Outlook

• Machine learning runs as common thread through nearly everything we do


• A rising tide; we are not alone


• Naturally traverses our traditional project and frontier boundaries 


• Engaging the broader ML community can be challenging but high impact


• Thus far, have only scratched the surface but potential is high


• Many collaborations started from grassroots efforts, others supported from 
project funding 


• Support needed to build more connections and collaborations at 
different scales

22


