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Message

e ML can, is, and will improve (the way we do) physics

- ML spans traditional boundaries
« We should not stovepipe in traditional silos

- Seemingly unrelated topics closely related and benefit from crosstalk

- Promote interdisciplinary exploration and teams
 Inside and outside our particle physics community

« ML techniques and research growing rapidly from many sources



Rest of talk outline

« Machine learning for particle physics

- Particle physics for machine learning

Disclaimer:
Examples throughout the talk based primarily on personal familiarity.
There are many (many!) other instances of exciting work.

https://iml-wg.github.io/HEPML-LivingReview/



Machine learning for particle physics



Why should we care about (deep) ML? —

« Improves our science

» See Daniel Whiteson’s talk on physics and ML in the deep learning era

» See David Shih’s talk on areas of physics opportunities for ML

« We are not alone in deploying ML

Data S[)éiéntist :
. Training: it can be a valuable skill to ST L engineer/
develop for early career scientists ‘M!;O"%E:fmfmer
. Conversely, many early career scientists .. W
are enthusiastic about developing
machine learning for physics - it is pervasive P on
arXiv:2205.02302
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Traversing traditional boundaries

- Algorithm-external:  Algorithm-internal:
Domain cross-over Cross-cutting ML themes
» Task-based  Physics-constraints,

+ Data representations interpretability

- Domain adaptation, fault
tolerance, uncertainty
quantification

» Experimental system and data
processing constraints

« Software, tools, education,

training - Efficient, resource-constrained
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https://towardsdatascience.com/coding-deep-learning-for-beginners-types-of-machine-learning-b9e651e1ed9d
https://towardsdatascience.com/coding-deep-learning-for-beginners-types-of-machine-learning-b9e651e1ed9d

« RL less widely-used than (un)supervised

« Surrogate modeling, digital twins important

- Applications studied for accelerator control -

beyond standard PID loops

- Similar techniques are being explored for:

Real-time adaptive collider triggers
Self-driving telescopes
Automated sensor/detector construction

Gravitational wave sensor denoising

Reinforcement, active learning

ACTION
._1_
AVRONNENT
STATE, REWARD
arXiv:2011.07371

Bending magnet
In-Situ measurement

Booster
Synchrotron

Environment
feedback

Power supply
control system

Programmable
logic

_<J Control signal
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https://indico.cern.ch/event/1104699/attachments/2446264/4196018/GNN%20for%20HL-LHC.pdf
https://exatrkx.github.io/
https://indico.cern.ch/event/1104699/attachments/2446264/4196018/GNN%20for%20HL-LHC.pdf
https://exatrkx.github.io/
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Domain adaptation, fault tolerance, etc. “*

arXiv:2002.07953

« Connected to persistent set of
challenges when applying ML, e.g.

Closed Set DA Partial DA

» How do ML model X works at a
different energy, mass, region, etc.?

« Physics-based simulation is a uniquely
powerful tool, but...

« Do we understand data vs MC

Universal DA

 semi-/self-supervised learning O 9

O Source Domain Label Set Target Domain Label Set

» Can we learn directly from the data?

« What happens when you see
something you don’t understand?
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 Large topic area with broad-ranging

Anomaly detection

Snowmss 2021

arXiv:2101.08320
arXiv:2105.14027

applications

« monitoring/validation to new physics

» E.g. LHC olympics (ML4Jets) & Dark

Machines challenges

« Rich inter-experiment effort with
extensive theory-experiment
collaborations

- Highlights the power of public datasets
and benchmarks as a way to catalyze

progress

The LHC Olympics 2020

A Community Challenge for Anomaly
Detection in High Energy Physics

Gregor Kasieczka (ed),! Benjamin Nachman (ed),?? David Shih (ed),* Oz Amram,’

Anders Andreassen,® Kees Benkendorfer,”” Blaz Bortolato,® Gustaaf Brooijmans,”

Florencia Canelli,' Jack H. Collins,!! Biwei Dai,'? Felipe F. De Freitas,'> Barry M.

Dillon,®'* loan-Mihail Dinu,> Zhongtian Dong,'® Julien Donini,'® Javier Duarte,'” D.

A. Faroughy'® Julia Gonski,” Philip Harris,'® Alan Kahn,? Jernej F. Kamenik,>'
Charanjit K. Khosa,?"3" Patrick Komiske,?! Luc Le Pottier,??? Pablo

Martin-Ramiro,??3 Andrej Matevc,'” Eric Metodiev,?' Vinicius Mikuni,'" Inés

Ochoa,?* Sang Eon Park,'® Maurizio Pierini,?> Dylan Rankin,'® Veronica Sanz,?0-2¢

Nilai Sarda,?” Uros Seljak,?>'? Aleks Smolkovic,® George Stein,?'? Cristina Mantilla

Suarez,® Manuel Szewc,?® Jesse Thaler,?! Steven Tsan,!” Silviu-Marian Udrescu,!8

Louis Vaslin,'® Jean-Roch Vlimant,?° Daniel Williams,? Mikaeel Yunus!®
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Particle physics for machine learning




ML out in the world

« ML is growing rapidly everywhere

» Development driven by academia and industry, largely outside of
particle physics

« We cannot (and should not) ignore this!

« Why?

- Bring new expertise, knowledge, and resources to bear on our
challenges

« Contribute to the advancement of machine learning itself and other
related applications

15



Interdisciplinary collaboration

» How do we capture the interest of non-
HEP collaborators?

 Straightforward way: the physics
mission is beautiful and engaging!

» Find unique aspects for our science
that could push the bounds of ML
research

« Because sometimes a computer vision
problem is a computer vision problem whether
its in industry or physics (and that’s ok!!)

PN

nvidia link

NVIDIA. DEVELOPER HOME FORUMS DOCS DOWNLOADS TRAINI

Over 500 GTC sessions now available free on NVIDIA O

TECHNICAL BLOG

Scaling Inference in High Energy Particle
Physics at Fermilab Using NVIDIA Triton

Inference Server

By Shankar Chandrasekaran, Lindsey Gray, Farah Hariri, Kevin Pedro, Vartika Singh, Nhan Tran, Mike Wang and Tingjun Yang

= Discuss (0) [@ Share K30 Like
Tags: featured, Kubernetes, NGC, physics, Triton
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https://developer.nvidia.com/blog/scaling-inference-in-high-energy-particle-physics-at-fermilab-using-nvidia-triton-inference-server/
https://developer.nvidia.com/blog/scaling-inference-in-high-energy-particle-physics-at-fermilab-using-nvidia-triton-inference-server/

Physics for machine learning =

« Some thrusts and themes we’ve found that resonate
we'd love to hear others’ experiences!

- Uncertainty quantification - scientific rigor requires more formal and
quantitative understand of uncertainties than other (industry) applications

- Physics-informed/constrained ML - underlying physical laws, symmetries,
or constraints to improve models (next slide) or infer physical parameters
(simulation-based inference) - under larger umbrella of inductive bias

- Fast/efficient ML - dataset sizes and data rates are in physics experiments
are uniguely massive w.r.t. industry and other scientific domains

17
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Physics-constrained ML

» Convolutional neural networks were a paradigm-shifting concept for deep
learning and computer vision

- Leverages spatial symmetries

» Deep understanding of physical laws and
constraints including sophisticated simulations
that encode our physics knowledge

Accuracy
o
(0]

o
~

o
o

—}— Fully-connected network

» See for example, white paper on “Symmetry Group - Fllrcomnected network (sugrment=
0.5

Equivariant Architectures for Physics” [arXiv: 2203.06153] 0.0 02 04 ; 06 08 10

- Potential benefits: model size/complexity, interpretability,
sample efficiency, generalizability, faithfulness to physical
laws

18



Fast, efficient ML

doi.org:10.3389/fdata.2022.787421
https://a3d3.ai/

A3D3 Institute

i REVIEW
& frontiers | Frontiers in Big Data published: 12 April 2022 1019 FPGA/ASIC 1 PBlyr _
doi: 10.3389/fdata.2022.787421 1 TB/yr

O
@ 10" -
Applications and Techniques for Fast
Machine Learning in Science 1075 B |
LHC HLT

Allison McCarn Deiana™, Nhan Tran?%*, Joshua Agar?, Michaela Blott®,

Streaming data rate [B/s]

Giuseppe Di Guglielmo®, Javier Duarte’, Philip Harris®, Scott Hauck®, Mia Liu ™,
Mark S. Neubauer', Jennifer Ngadiuba?, Seda Ogrenci-Memik?®, Maurizio Pierini?, 1 01 3 _
Thea Aarrestad ?, Steffen Bahr'?, Jiirgen Becker ™, Anne-Sophie Berthold ',
Richard J. Bonventre®, Tomas E. Miiller Bravo '°, Markus Diefenthaler'’, Zhen Dong 'é,
Nick Fritzsche ™, Amir Gholami'®, Ekaterina Govorkova'?, Dongning Guo>?,
OPEN ACCESS  Kyle J. Hazelwood?, Christian Herwig?, Babar Khan®, Sehoon Kim '8, Thomas Klijinsma?, 101 N
_ Yaling Liu?', Kin Ho Lo?, Tri Nguyen?é, Gianantonio Pezzullo?, | H C LT DUNE
Edited by: Seyedramin Rasoulinezhad?, Ryan A. Rivera?, Kate Scholberg?, Justin Selig'*,
romenn Graviation /E(/fg @ f“(;cro’ Sougata Sen?, Dmitri Strukov?, William Tang?®, Savannah Thais?, Kai Lukas Unger ™,
vropedn ravitational bserva /(;aX/ Ricardo Vilalta®®, Belina von Krosigk >%, Shen Wang?' and Thomas K. Warburton?' 1 09
LIGO 4IF
. , o Neuro ooe
More discussion on this in IFO4, IFO7, 1071 ]
: lceCube € Netfli
CompF03, and CompF04 sessions! | | | R

10-® 10°® 10* 102 10° 102 10* 10°
Latency requirement [s]
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Fast, efficient ML

TABLE 2 | Domains and practical constraints: systems are broadly classified as soft (software-programmable computing devices: CPUs, GPUs, and TPUs) and custom
(custom embedded computing devices: FPGAs and ASICs).

Domain Event rate Latency Systems Energy-constrained
Detection and event reconstruction No

LHC and intensity frontier HEP 10s Mhz NS-Ms Soft/custom

Nuclear physics 10s kHz ms Soft

Dark matter and neutrino physics 10s MHz US Soft/custom

Image processing

Material synthesis 10s kHz ms Soft/custom

Scanning probe microscopy kHz ms Soft/custom

Electron microscopy MHz US Soft/custom

Biomedical engineering kHz ms Soft/custom Yes (mobile settings)
Cosmology Hz S Soft

Astrophysics kKHz—-MHz MS-US Soft Yes (remote locations)

Signal processing

Gravitational waves kHz ms Soft
Health monitoring kHZz ms Custom Yes
Communications kKHZz ms Soft Yes (mobile settings)

Control systems
Accelerator controls kHz MS—uS Soft/custom

Plasma physics kHz ms Soft

L

Snowmass 2021
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Fast, efficient ML

Unique particle physics challenges necessitates
novel solutions, techniques, and tools

Snowmss 2021

fastmachinelarning.org
arXiv:2006.10159

arXiv:2102.11289
arXiv:2206.11791
arXiv:2206.07527

E.g. community collaboration with computer scientists, engineers in academia & industry (Google,

AMD/Xilinx, MLCommons,...), among others on open-source tools beyond physics

Ultra Low-latency, Low-area Inference Accelerators using
Heterogeneous Deep Quantization with QKeras and hls4ml

Claudionor N. Coelho Jr.
Aki Kuusela, Hao Zhuang

Mountain View, California, USA

Thea Aarrestad, Vladimir Loncar®
Jennifer Ngadiuba, Maurizio Pierini

Google LLC Sioni Summers Vladimir Loncar*
European Organization for Nuclear Research (CERN)
Geneva, Switzerland

QONNX: Representing Arbitrary-Precision
Quantized Neural Networks

Alessandro Pappalardo, Yaman Umuroglu, Michaela Blott Jovan Mitrevskif, Ben Hawks, Nhan Tran
AMD Adaptive and Embedded Computing Group (AECG) Labs Fermi National Accelerator Laboratory
Dublin, Ireland Batavia, IL, USA

Sioni Summers Hendrik Borras
Massachusetts Institute of Technology European Organization for Nuclear Research (CERN) Heidelberg University

Ps and Qs: Quantization-Aware
Pruning for Efficient Low Latency
Neural Network Inference

Benjamin Hawks', Javier Duarte?, Nicholas J. Fraser®, Alessandro Pappalardo®,
Nhan Tran"** and Yaman Umuroglu®

! Fermi National Accelerator Laboratory, Batavia, IL, United States, University of California San Diego, La Jolla, CA, United States,
SXilinx Research, Dublin, Ireland, “Northwestern University, Evanston, IL, United States

Cambridge, MA, USA Geneva, Switzerland Heidelberg, Germany
Jules Muhizi Matthew Trahms, Shih-Chieh Hsu, Scott Hauck Javier Duarte!
Harvard University University of Washington University of California San Diego
Cambridge, MA, USA Seattle, WA, USA La Jolla, CA, USA

OPEN-SOURCE FPGA-ML CODESIGN FOR THE MLPERF™ TINY
BENCHMARK

his 4 ml

Hendrik Borras' Giuseppe Di Guglielmo? Javier Duarte® Nicolo Ghielmetti* Ben Hawks> Scott Hauck °
Shih-Chieh Hsu® Ryan Kastner® Jason Liang® Andres Meza® Jules Muhizi’’ Tai Nguyen® Rushil Roy*
Nhan Tran> Yaman Umuroglu® Olivia Weng® Aidan Yokuda® Michaela Blott?®

by Ben Wodecki 6/16/2021

e Commons

MLCommons launches machine learning benchmark for
devices like smartwatches and voice assistants

With experts from Qualcomm, Fermilab, and
Google aiding in its development

MLCommons, the open engineering
consortium behind the MLPerf benchmark test,
has launched a new measurement suite aimed
at 'tiny’ devices like smartwatches and voice

assistants.

MLPerf Tiny Inference is designed to compare
performance of embedded devices and models

with a foanrnrint nf 1NNKR Ar lace hv moaaciirinm

link
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http://fastmachinelarning.org
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https://aibusiness.com/document.asp?doc_id=770273&
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Outlook

« Machine learning runs as common thread through nearly everything we do
« Arising tide; we are not alone
» Naturally traverses our traditional project and frontier boundaries

- Engaging the broader ML community can be challenging but high impact

e Thus far, have only scratched the surface but potential is high

- Many collaborations started from grassroots efforts, others supported from
project funding

 Support needed to build more connections and collaborations at
different scales
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