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What new fields and 
discoveries await? 
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Modern Machine Learning

How will modern ML enable new kinds of physics? 


With modern ML, we can extract more information from data than ever before.

Data:  “events”  drawn iid from some distribution xi ∈ Rd p(x)

• All the information contained in the data is contained in .p(x)

• Generally, the underlying  of the data is unknown.p(x)

• Modern ML can access  (explicitly or implicitly) from data, even for very 
high dimensional x!

p(x)

3



Modern Machine Learning

•  itself [density estimation, eg Normalizing Flows] 


• conditional densities  [conditional density estimation, also NFs]


• sampling from  [generative modeling, eg GANs, VAEs, NFs]


• ratios of densities  [classification, eg CNNs, RNNs, transformers, GNNs, …]


• ….

p(x)

p(x |y)

p(x)

p1(x)/p2(x)

In what ways can modern ML access the full likelihood of the data?
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Modern Machine Learning

Data Physics
Modern 


Machine Learning

• Opens up entirely new frontiers in data analysis


• Qualitatively new kinds of physics analyses that weren’t possible before


• A Golden Era of method development, proofs-of-concept and new results

Modern Machine Learning will enable us to extract much more physics from 
data than ever before
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Modern Machine Learning

Data
Modern 


Machine Learning

Modern Machine Learning will enable us to extract much more physics from 
data than ever before

New physics searches

Fast simulation

Triggering

Instrumentation

Theory

…

Apologies in advance if I can’t cover everything in this talk!!
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ML for New Physics Searches

The vast majority of LHC searches for 
new physics are very model specific

Future Organization of Physics Analysis Groups at the LHC??

SUSYTop
Higgs

SM

B physics

Exotics/
Exotica

B2G / 
HDBSModel 

Agnostic?
Weakly Supervised

(Semi) Supervised

Unsupervised

Statistics 
forum ML 

forum

Measurement 
Groups

Search 
Groups

Supporting 
organizations

Why aren’t there more model-agnostic 
new physics searches?
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from 2101.08320

https://arxiv.org/abs/2101.08320


ML for New Physics Searches

A lot of community interest in model-agnostic NP 
searches!


Both theorists and experimentalists are proposing 
many new approaches using modern ML

The LHC Olympics 2020
A Community Challenge for Anomaly
Detection in High Energy Physics

Gregor Kasieczka (ed),1 Benjamin Nachman (ed),2,3 David Shih (ed),4 Oz Amram,5

Anders Andreassen,6 Kees Benkendorfer,2,7 Blaz Bortolato,8 Gustaaf Brooijmans,9

Florencia Canelli,10 Jack H. Collins,11 Biwei Dai,12 Felipe F. De Freitas,13 Barry M.

Dillon,8,14 Ioan-Mihail Dinu,5 Zhongtian Dong,15 Julien Donini,16 Javier Duarte,17 D.

A. Faroughy10 Julia Gonski,9 Philip Harris,18 Alan Kahn,9 Jernej F. Kamenik,8,19

Charanjit K. Khosa,20,30 Patrick Komiske,21 Luc Le Pottier,2,22 Pablo

Mart́ın-Ramiro,2,23 Andrej Matevc,8,19 Eric Metodiev,21 Vinicius Mikuni,10 Inês

Ochoa,24 Sang Eon Park,18 Maurizio Pierini,25 Dylan Rankin,18 Veronica Sanz,20,26

Nilai Sarda,27 Uros̆ Seljak,2,3,12 Aleks Smolkovic,8 George Stein,2,12 Cristina Mantilla

Suarez,5 Manuel Szewc,28 Jesse Thaler,21 Steven Tsan,17 Silviu-Marian Udrescu,18

Louis Vaslin,16 Jean-Roch Vlimant,29 Daniel Williams,9 Mikaeel Yunus18

1Institut für Experimentalphysik, Universität Hamburg, Germany
2Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
3Berkeley Institute for Data Science, University of California, Berkeley, CA 94720, USA
4NHETC, Department of Physics & Astronomy, Rutgers University, Piscataway, NJ 08854, USA
5Department of Physics & Astronomy, The Johns Hopkins University, Baltimore, MD 21211,
USA
6Google, Mountain View, CA 94043, USA
7Physics Department, Reed College, Portland, OR 97202, USA
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ML for New Physics Searches
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Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino

2

Autoencoders

Fully unsupervised


Sensitive to outliers (low )

Farina, Nakai & DS 1808.08992


Heimel et al 1808.08979

and many more!!

p(x)

2

m

a.u.

SB SR SB

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

x

pdata(x|m 2 SR)

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

optimal test statistic for a data-versus-background hy-
pothesis test [75].

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events

should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)
from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data
vs. perfectly simulated background). The latter places
an upper bound on the performance of any data-vs-
background anomaly detection technique, and we show
how Cathode essentially saturates its performance.
This means that for the first time, a fully-simulation-
independent anomaly detection method has been demon-
strated to achieve the theoretical upper bound in sensi-
tivity to new physics. The Cathode method is basically
the best that it could possibly be.

Finally, as in [39], we study the case where x and m
are correlated, by adding artificial linear correlations to
two of the features in x. Again we show that Cathode
(like Anode, and unlike CWoLa Hunting) is largely ro-
bust against such correlations, and continues to match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.

Enhanced bump hunts

Weakly supervised


Sensitive to overdensities (high )

CWoLa Hunting [Collins, Howe & Nachman 1805.02664, 1902.02634]


ANODE [Nachman & DS 2001.04990]

CATHODE [Hallin et al 2109.00546]

CURTAINS [Raine et al 2203.09470]


and more…

pdata(x)/pbg(x)

from 1808.08992

from 2109.00546

https://arxiv.org/abs/1808.08992
https://arxiv.org/abs/1808.08979
https://arxiv.org/abs/1805.02664
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https://arxiv.org/abs/2001.04990
https://arxiv.org/abs/2109.00546
https://arxiv.org/abs/2203.09470
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ML for New Physics Searches

Proofs-of-concept are becoming actual LHC searches!

fit signal regions are defined as the mJJ signal regions
the NN used for training, combined with the adjacent
halves of the left and right neighboring regions; the fit
sidebands are defined as the complement of the fit
signal regions. An iterative procedure is applied until
the p value from the fit sideband χ2 is greater than
0.05. Since the NN is trained to distinguish the
signal region from its neighboring regions, it is

expected that themJJ spectrum is smooth in the fit sideband
region in the presence or absence of a true signal. First, the
data are fit to dn=dx ¼ p1ð1 − xÞp2−ξ1p3x−p3 , where
x ¼ mJJ=

ffiffiffi
s

p
, pi are fit parameters, and the ξi are chosen

to ensure that the pi are uncorrelated. If the fit quality
is insufficient, an extended function is used instead
[100]: dn=dx ¼ p1ð1 − xÞp2−ξ1p3x−p3þðp4−ξ2p3−ξ3p2Þ logðxÞ.
If the fit quality remains insufficient, a variation of the
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FIG. 2. A comparison of the fitted background and the data in all six signal regions, indicated by vertical dashed lines, and for (a),(c)
ϵ ¼ 0.1 and (b),(d) ϵ ¼ 0.01. Dashed histograms represent the fit uncertainty. The lower panel is the Gaussian-equivalent significance of
the deviation between the fit and data. The fits are performed including the sidebands, but only the signal region predictions and
observations in each region are shown. As the NN is different for each signal region, the presented spectrum is not necessarily smooth.
The top plots (a),(b) show the result without injected signal, and the bottom plots (c),(d) present the same results but with signals injected
only for the NN training at mA ¼ 3 TeV (signal 1) and mA ¼ 5 TeV (signal 2), each with mB ¼ mC ¼ 200 GeV. The injected cross
section for each signal is just below the limit from the inclusive dijet search [100].

PHYSICAL REVIEW LETTERS 125, 131801 (2020)

131801-4
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CWoLa Hunting

ATLAS, PRL 125 131801 (2020)

CWoLa Hunting

RNN VAE

ATLAS-CONF-2022-045
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FIG. 2. A comparison of the fitted background and the data in all six signal regions, indicated by vertical dashed lines, and for (a),(c)
ϵ ¼ 0.1 and (b),(d) ϵ ¼ 0.01. Dashed histograms represent the fit uncertainty. The lower panel is the Gaussian-equivalent significance of
the deviation between the fit and data. The fits are performed including the sidebands, but only the signal region predictions and
observations in each region are shown. As the NN is different for each signal region, the presented spectrum is not necessarily smooth.
The top plots (a),(b) show the result without injected signal, and the bottom plots (c),(d) present the same results but with signals injected
only for the NN training at mA ¼ 3 TeV (signal 1) and mA ¼ 5 TeV (signal 2), each with mB ¼ mC ¼ 200 GeV. The injected cross
section for each signal is just below the limit from the inclusive dijet search [100].

PHYSICAL REVIEW LETTERS 125, 131801 (2020)

131801-4
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CWoLa Hunting

ATLAS, PRL 125 131801 (2020)

CWoLa Hunting

RNN VAE

ATLAS-CONF-2022-045

• Beginning of a big wave? 


• Many more analyses from ATLAS and CMS on the way!


• Enormous discovery potential about to be tapped!



Fast ML for  
Online Anomaly Detection

12



Fast ML for Online Anomaly Detection

• ML for triggers and DAQ used since the 90s (CDF, H1); widely used at LHC at 
both L1 and HLT


• New avenue with modern ML: anomaly detection at trigger level

anomaly score > threshold

anomaly score < threshold

13

Events
Keep event

Fast anomaly 
detection 

Discard event



Fast ML for Online Anomaly Detection

• ML for triggers and DAQ used since the 90s (CDF, H1); widely used at LHC at 
both L1 and HLT


• New avenue with modern ML: anomaly detection at trigger level

14

• Autoencoders for anomaly detection at trigger level [Cerri et al 1811.10276, Knapp et al 
2005.01598, Dillon et al 2206.14225, …]


• Autoencoders on FPGAs for L1T [Govorkova et al. 2108.03986] 


• Double Decorrelated Autoencoders for anomaly detection and background estimation 
at trigger level [Mikuni, Nachman & DS 2111.06417]



Fast ML for Online Anomaly Detection

Ongoing data challenge for Fast Anomaly Detection [2107.02157] 
Organizers: Govorkova, Puljak, Ngadiuba, Pierini, Aarrestad

Deadline: ML4Jets2022@Rutgers in November 15

https://mpp-hep.github.io/ADC2021/
https://arxiv.org/abs/2107.02157


Fast ML for Online Anomaly Detection
Crazy idea: what if we could replace LHC with a generative model?

SciPost Physics Submission

Measurement

HL Trigger

ONLINEFLOW generate  
synthetic 
events

Analysis

save
few 

 events

Analysis

Update

Online Offline

LVL1 Trigger

Figure 2: Illustration of the proposed workflow. First, we train a generative model on
all incoming events (online). Then, we use the trained model to generate data and
analyze the generated data for signs of new physics (offline). If necessary, we adjust
the trigger to take new data accordingly (online) and analyze that data (offline).

While our idea is not tied to specific generative models, normalizing flows (NF) [28–31]
are especially well suited due to their stable training. This allows us to train our ONLINEFLOW

without stopping criterion, a property well suited for training online. Furthermore, NFs have
been shown to precisely learn complex distributions in particle physics [32–42]. The statistical
benefits of using generative models are discussed in Ref. [43], for a discussion of training-
related uncertainties using Bayesian normalizing flows see Refs. [44,45].

The properties of online training, specifically seeing every event independently and only
once, are in tension with training generative models. Such models perform best when they
have the option to look at data points more than once. Additionally, processing several events
at the same time should allow the model to train significantly faster through the use of GPU-
based parallelization and stochastic gradient descent. This is why we follow a hybrid approach:
incoming events are collected in a buffer with size Nbuff. Once this buffer is full, it is passed
to the network, which processes the information in batches of size Nbatch. This process is
iterated over Niter times. After this, the buffer is discarded and replaced by the next buffer. We
visualize this scheme in Fig. 3. In addition to aiding the network training, this hybrid training
also decouples the network training rate from the data rate, as we can continuously adapt Niter
to ensure the network is done with the current buffer by the time the next is filled. Additional
technical details, including the estimation of uncertainties, of our approach are discussed in
the context of the examples presented below.

3 Parametric example

We first illustrate our strategy for a 1-dimensional parametric example. While in practice it
would be straightforward to store at least a histogram for any given 1-dimensional observ-
able, this scenario still allows us to explore how generative training and subsequent statistical
analysis approaches need to be modified for the ephemeral learning task.

4

Train generative model (eg Normalizing Flow) 
on every event (or every event after L1T).


If generative model is perfect, we have 
successfully encoded SM (plus any NP in the 
data)!


Can potentially discard LHC (after all the 
data is taken) and just perform offline 
analysis on events from generative model?!

Butter, Diefenbacher, Kasieczka, Nachman, Plehn, DS & Winterhalder 2202.09375
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CERN-LHCC-2022-005

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

Detector simulation (GEANT4) and event generation (MG5, Pythia, Herwig, …) 
are major — and growing — bottlenecks at LHC and other experiments
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ML methods can provide fast and accurate “surrogate models” for GEANT4 etc


• Snowmass WP — detector sim — 2203.08806


• Snowmass WP — event generation — 2203.07460

GEANT4  events1010

Surrogate model

SLOW but ACCURATE

FAST and ACCURATE?

19

GEANT4  events105

(GAN, VAE, Normalizing Flow, …)

Learn underlying distribution of GEANT4 events

 events1010

https://arxiv.org/abs/2203.08806
https://arxiv.org/abs/2203.07460


those voxels are always zero. This is a sign of mode collapse, since the GAN did not learn to

cover the full available phase space.

Figure 5. Average shower shapes for e
+. Columns are calorimeter layers 0 to 2, top row shows

CaloFlow, center row Geant4, and bottom row CaloGAN

– 14 –

Fast ML for Surrogate Modeling

Toy ATLAS ECAL from CaloGAN [Paganini, de Oliveira & Nachman 
1705.02355, 1712.10321] — 3 layers, 504 voxels

ML methods are achieving impressive performance on high-dimensional 
surrogate modeling tasks

20

First to ever pass the “ultimate classifier metric” test


 faster than GEANT4!104 ×

CaloFlow [Krause & DS, 2106.05285, 2110.11377] 
— first ever GEANT4 surrogate model based on 
normalizing flows

Table 1. blahblabblah

AUC GEANT4 vs. CaloGAN GEANT4 vs. CaloFlow

e+ 1.000(0) 0.847(8)

� 1.000(0) 0.660(6)

⇡+ 1.000(0) 0.632(2)
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Figure 12. Comparison of shower generation times, using the fastest CaloGAN numbers for com-
parison.

6 Conclusions

In this work, we have presented CaloFlow v2, a faster-sampling normalizing flow for

Geant4 calorimeter shower emulation that matches the speed of CaloGAN yet retains the

superior fidelity of CaloFlow v1 [17]. To achieve this impressive performance, CaloFlow

v2 is based on the fast-sampling IAF architecture, whereas CaloFlow v1 was based on the

alternative MAF architecture. We overcame fundamental obstacles in training IAFs for high

dimensional datasets using the novel technique of Probability Density Distillation to fit the

“student” IAF to the “teacher” MAF instead of directly to the Geant4 data. We also im-

proved and innovated beyond the existing ML literature for Probability Density Distillation,

inventing several new loss terms that greatly improve the matching of the IAF to the MAF.

We expect there could be many applications of this “fully-guided” teacher-student training

to other domains in fundamental physics and beyond.

Through [17] and the present work, we have demonstrated that normalizing flows are an

extremely promising method for fast and accurate generative modeling of high dimensional

datasets. With regards to calorimeter emulation, many interesting future directions remain,

including generalizing this work to even higher dimensional calorimeters (e.g. ILD [14, 15] and

CMS HGCAL [11, 35]), generalizing beyond perpendicular and central incident particles [6, 9–

13, 16], and including simulations of both ECAL and HCAL showers.

– 22 –

https://arxiv.org/abs/1705.02355
http://www.apple.com
https://arxiv.org/abs/1712.10321
https://arxiv.org/abs/2106.05285
https://arxiv.org/abs/2110.11377


Fast ML for Surrogate Modeling

30x30x30 = 27,000 voxels ILD prototype (similar scale to CMS HGCAL) 
— current frontier in dimensionality
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Fig. 4 Diagram of the BIB-AE architecture, including the additional MMD term defined in Sec. 3.4 and the Post Processor
Network defined in Sec. 3.5. The blue line shows where the true energy is used as an input. The loss functions and feedback
loops are explained in the text.

As it is an overarching model, an instructive way
for describing the base BIB-AE framework is by taking
a VAE and expanding upon it. A default VAE consist
of four general components: an encoder, a decoder, a
latent-space regularized by the Kullback–Leibler diver-
gence (KLD), and an LN -norm to determine the di↵er-
ence between the original and the reconstructed data.
These components are all present as well in the BIB-
AE setup. Additionally, one introduces a GAN-like ad-
versarial network, trained to distinguish between real
and reconstructed data, as well as a sampling based
method of regularizing the latent space, such as an-
other adversarial network or a maximum mean discrep-
ancy (MMD, as described in the next section) term. In
total this adds up to four loss terms: The KLD on the
latent space, the sampling regularization on the latent
space, the LN -norm on the reconstructed samples and
the adversary on the reconstructed samples. The guid-
ing principle behind this is that the two latent space and
the two reconstruction losses complement each other
and, in combination, allow the network to learn a more
detailed description of the data. Specifically looking at
the two reconstruction terms we have, on the one hand,
the adversarial network: from tests on utilizing GANs
for shower generation we know that such adversarial
networks are uniquely qualified to teach a generator to
reproduce realistic looking individual showers. On the
other hand, we have the LN -norm: while our trials with
pure VAE setups have shown that LN -norms have great
di�culty capturing the finer structures of the electro-
magnetic showers, an LN -norm also forces the encoder-
decoder structure to have an expressive latent space,
as the original images could not be reconstructed with-
out any latent space information. Therefore, the ad-
versarial network forces the individual images to look
realistic, while the LN -norm forces latent space utiliza-
tion, thereby improving how well the overall properties
of the data set are reproduced. The latent space loss

terms have a similar interaction. Here the KLD term
regularizes our complete latent space by reducing the
di↵erence between the average latent space distribution
and a normal Gaussian. The KLD is, however, largely
blind to the shape of the individual latent space dimen-
sions, as it only cares about the average. The sampling
based latent space regularization term fills this niche by
looking at every latent space dimension individually.

Our specific implementation of the BIB-AE frame-
work is shown in Fig. 4. For our sampling based la-
tent regularization we use both an adversary and an
MMD term. The adversaries are implemented as crit-
ics trained with gradient penalty, similar to the WGAN
approach. The main di↵erence in our setup compared
to the one described in [24] is that we replaced the
LN -norm with a third critic, trained to minimize the
di↵erence between input and reconstruction. We chose
this because we found that using the LN -norm to com-
pare the input and the reconstructed output resulted
in smeared out images.

For the precise implementation of the loss functions
we define the encoder network N , the decoder network
D, the latent critic CL, the critic network C, and the
di↵erence critic CD. The loss function for the latent
critic CL is given by

LCL =E[CL(NE(x))]� E[CL(N (0, 1))]

+ � E[(k rx̂CL(x̂) k2 �1)2].
(6)

Here x̂ is a mixture of the encoded input image N(x)
and samples from a normal distribution N (0, 1)) and
the E subscript indicates that the network receives the
photon energy label as an input. The loss function for
the main critic C is given by

LC =E[CE(DE(NE(x)))]� E[CE(x)]

+ � E[(k rx̂CE(x̂) k2 �1)2].
(7)

Where x̂ is a mixture of the reconstructed imageD(N(x))
and the original images x. Finally, the loss function for

Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed 7

Fig. 5 Examples of individual 50 GeV photon showers generated by Geant4 (left), the GAN (center left), WGAN (center
right), and BIB-AE (right) architectures. Colors encode the deposited energy per cell.

a WGAN with additional energy constrainer (Sec. 3.2),
and a BIB-AE with energy-MMD and post processing
(Secs. 3.3, 3.4 and 3.5). A detailed discussion of the ar-
chitectures and training hyper parameters can be found
in Appendix A. All architectures are trained on the
same sample of 950k Geant4 showers. Tests are either
shown for the full momentum range (labeled full spec-
trum) or for specific shower energies (labeled with the
incident photon energy in GeV).

4.1 Physics Performance

We first verify in Fig. 5 that the showers generated by
all network architectures visually appear to be accept-
able compared to Geant4. Were we attempting to gen-
erate cute cat pictures, our work would be done already
at this point. Alas, these shower images are eventually
to be used as realistic substitutes in physics analyses so
we need to pay careful attention to relevant di↵erential
distributions and correlations.

In Figure 6 a comparison between two di↵erential
distributions for all studied architectures and Geant4
is shown. The left plot compares the per-cell hit-energy
spectrum averaged over showers for the full spectrum
of photon energies. We observe that while the high-
energy hits are well described by all generative models,
both GAN and WGAN fail to capture the bump around
0.2 MeV. The BIB-AE is able to replicate this feature
thanks to the Post Processor Network.4 This energy
corresponds to the most probable energy loss of a MIP
passing a silicon sensor of the ILD Si-W ECal at per-
pendicular incident angle. Since this is a well-defined
energy, it can be used in highly granular calorimeters
for the equalisation of the cell response as well as for
setting an absolute energy scale. It also leads to a sharp
rise in the spectrum, as lower energies can only be de-
posited by ionizing particles that pass only a fraction of

4 We studied applying post processing to the WGAN ar-
chitecture as well. This is discussed in Section 4.2.

the thickness at the edges of sensitive cells or that are
stopped. The region below half a MIP, corresponding
to around 0.1 MeV, is shaded in dark grey. These cell
energies are very small and therefore will be discarded
in a realistic calorimeter, as their signal to noise ratio is
too low. For the following discussion cell energies below
0.1 MeV will therefore not be considered and only cells
above this cut-o↵ are included in all other performance
plots and distributions.

Next, the plot on the right shows the number of hits
for three discrete photon energies (20 GeV, 50 GeV, and
80 GeV). Here, the GAN andWGAN setups slightly un-
derestimate the total number of hits, while the BIB-AE
accurately models the mean and width of the distribu-
tion. This behavior can be traced back to the left plot.
Since we apply a cuto↵ removing hits below 0.1 MeV, a
model that does not correctly reproduce the hit-energy
spectrum around the cut-o↵ will have di�culties cor-
rectly describing the number of hits.

Additional distributions are shown in Fig. 7. The
top left depicts the visible energy distribution for the
same three discrete photon energies. Both, the shape,
center and width of the peak are well reproduced for all
models. Due to the sampling nature of the calorimeter
under study, the visible energy is of course much lower
than the incoming photons’ energy.

In the top right and bottom two plots we compare
the spatial properties of the generated showers. First,
on the top right, the position of the center of gravity
along the z axis is shown. The Geant4 distribution is
well modelled by the GANs, however there are slight
deviations for the BIB-AE. A detailed investigation of
this discrepancy showed that the z axis center of gravity
is largely encoded in a single latent space variable. A
mismatch between the observed latent distribution for
real samples and the normal distribution drawn from
when generating new samples directly translates into
the observed di↵erence. Sampling from a modified dis-
tribution would remove the problem.

8 Erik Buhmann et al.

Fig. 6 Di↵erential distributions comparing the per-cell energy (left) and the number of hits above 0.1 MeV (right) between
Geant4 and the di↵erent generative models. Shown are Geant4 (grey, filled), our GAN setup (blue, dashed), our WGAN (red,
dotted) and the BIB-AE (green, solid). The energy per-cell is measured in MeV for the bottom axis and in multiples of the
expected energy deposit of a minimum ionizing particle (MIP) for the top axis.

Finally, the two plots on the bottom show the lon-
gitudinal and radial energy distributions. We see that
while all models are able the reproduce the bulk of the
distributions very well, deviations for the WGAN ap-
pear around the edges.

We next test how well the relation of visible energy
to the incident photon energy is reproduced. To this end
we use a Geant4 sample where we simulated photons at
discrete energies ranging from 20 to 90 GeV in 10 GeV
steps. We then use our models to generate showers for
these energies and calculate the mean and root-mean-
square of the 90% core of the distribution, labeled µ90

and �90 respectively, for all sets of showers. The results
are shown in Fig. 8. Overall the mean (left) is correctly
modelled, showing only deviations in the order of one to
two percent. The relative width, �90/µ90 (right) looks
worse: GAN and WGAN overestimate the Geant4 value
at all energies. While the BIB-AE on average correctly
models the width, it still shows deviations of up to ten
percent at high energies. Note that the width cannot
be interpreted as energy resolution of the calorimeter
due to the two di↵erent absorber thicknesses used in
the ECal, requiring di↵erent calibrations.

Finally, we verify whether correlations between indi-
vidual shower properties present in Geant4 are correctly
reproduced by our generative setups. The properties
chosen for this are: The first and second moments in x,
y and z direction, labeled as m1,x through m2,z, the vis-
ible energy deposited in the calorimeter Evis, the energy

of the simulated incident particle Einc, the number of
hits nhit, and the ratio between the energy deposited in
the 1st/2nd/3rd third of the calorimeter and the total
visible energy, labeled E1/Evis through E3/Evis. The
results are shown in Fig. 9. The top left plot shows the
correlations for Geant4 showers. We then present the
di↵erence to Geant4 for the GAN (top right), WGAN
(bottom left), and BIB-AE (bottom right). The small-
est di↵erences are observed for the GAN (absolute max-
imum di↵erence of 0.2), followed BIB-AE (0.36) and
WGAN (0.57).

Fig. 10 shows examples of 2D scatter plots: the num-
ber of hits and the visible energy (top row) as well as
the center of gravity and the visible energy (bottom
row). These allow us insight into the full correlations
between these variables beyond the simple correlation
coe�cients. Similar to Fig. 9 we see that the GAN
matches the Geant4 correlations exceptionally well, while
the WGAN and the BIB-AE display some slight corre-
lation mis-matching. The discrepancy in the BIB-AE
center of gravity and visible energy correlation can be
traced back to the mismodelling of the center of gravity
as seen in Fig. 7.

The distributions of physical observables shown above
are expected to be the major factor for assessing the
quality of a simulation tool. While the correlations are
also useful as they provide additional insight, our main
focus when evaluating network performance are the phys-
ics distributions.
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https://calochallenge.github.io/homepage/

Ongoing data challenge for fast calorimeter simulation 

Organizers: Giannelli, Kasieczka, Krause, Nachman, Salamani, DS, Zaborowska


3 datasets: 

• “easy” — official ATLAS CaloSim (~  voxels)

• “medium” — GEANT4 example detector (~  voxels)

• “hard” — GEANT4 example detector (~  voxels)


Deadline: ML4Jets2022@Rutgers in November
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Other new avenues for ML in HEP
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ML for Instrumentation

Fully differentiable surrogate model => could be very useful in designing 
experiments

Figure 1: Block diagram for the optimization of a generic detector. Data from a
simulator (left, cans labeled “Particle-level truth” and “Detector response”) are used
to train and validate a di↵erentiable model (“Di↵erentiable simulator surrogate”) of
the relevant physical processes. Models of pattern recognition, inference extraction,
cost of components, and a loss function may then become a function of detector
geometry and construction layout parameters. A back-propagation loop of loss
derivatives through the functional elements of the system allows their optimization.
The figure is adapted from Ref. [2].

increasing with our technological advancements. Nowadays we can 3D print scintil-
lation detectors [3], as well as design more complex detection elements with thin
layers of AC-coupled resistive silicon sensors [4]. These advancements can best be
exploited if we endow ourselves with the capability of performing continuous scans
of the geometry space of the devices we wish to construct: this is something we
achieve by developing di↵erentiable programming pipelines.

Another reason for revisiting our detector design paradigms while accounting for
the availability and development of new computer science tools is the evolution
of the pattern recognition and inference procedures we have been adopting in the
extraction of information from raw detector readouts. The demands posed to
our instruments are continuously increasing, as we move, e.g., toward the high-
luminosity (HL) phase of the Large Hadron Collider (LHC) [5], or toward larger and
larger detection volumes in cosmic ray and neutrino physics. At the HL-LHC, in a
few years we will be reconstructing high-energy particle collisions within O(200)
pileup interactions taking place during the same bunch crossing; the performance
of standard reconstruction algorithms for charged tracks will be strongly reduced
in the presence of an exponential increase of the combinatorial background. If deep
learning methods will be employed for those pattern recognition tasks (such as those
described in Refs. [6–26]), the question arises of whether the detectors have been
conceived to be optimal for those tools. Such a potential misalignment between

6
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• MODE collaboration WP “End-to-End 
Optimization of Particle Physics 
Instruments with Differentiable 
Programming” 2203.13818


• See also AI-assisted design of EIC 
detector [Fanelli et al 2205.09185]

from 2203.13818

Optimizing detector design 

https://arxiv.org/abs/2203.13818
https://arxiv.org/abs/2205.09185
https://arxiv.org/abs/2203.13818
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• Many promising applications of Reinforcement Learning to real-time accelerator 
operations 

• Pang et al “Autonomous Control of a Particle Accelerator using Deep Reinforcement Learning” 2010.08141 
• St. John et al “Real-time Artificial Intelligence for Accelerator Control: A Study at the Fermilab Booster” 2011.07371

• Kain et al “Sample-efficient reinforcement learning for CERN accelerator control” Phys.Rev.Accel.Beams 23 (2020) 12, 124801

• Scheinker et al “Advanced Control Methods for Particle Accelerators (ACM4PA) 2019 Workshop Report” 2001.05461


• “self-driving triggers”

• Bartoldus et al Snowmass WP 2203.07620

• Y. Chen et al., “Self-driving data trigger, filtering, and acquisition”, Snowmass LOI (2020) 


• “self-driving telescopes”

• Nord et al, “Cycle and symbiosis: AI and Cosmology intersect to produce new knowledge and tools”, Snowmass LOI (2020)
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from Kain et al

https://arxiv.org/abs/2010.08141
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https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.124801
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from 1805.00013 

from 1908.06980 

“Simulation based inference”

Potential for performing measurements using full unbinned phase space

Cranmer, Brehmer, Louppe 1911.01429

Brehmer & Cranmer 2010.06439

https://arxiv.org/abs/1805.00013
https://arxiv.org/abs/1908.06980
https://arxiv.org/abs/1911.01429
https://arxiv.org/abs/2010.06439
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“Omnifold”

Potential for performing measurements using full unbinned phase space

2

prior spectrum t(0)j = Pr0(truth is j), IBU proceeds iter-
atively according to the equation:

t(n)
j =

X

i

Prn�1(truth is j | measure i) Pr(measure i)

=
X

i

Rijt
(n�1)
j

P
k Rikt(n�1)

k

⇥ mi, (2)

where n is the iteration number.
OmniFold uses machine learning to generalize Eq. (2)

to the unbinned, full phase space. A key concept for this
approach is the likelihood ratio:

L[(w, X), (w0, X 0)](x) =
p(w,X)(x)

p(w0,X0)(x)
, (3)

where p(w,X) is the probability density of x estimated
from empirical weights w and samples X. The function
L[(w, X), (w0, X 0)](x) can be approximated using a clas-
sifier trained to distinguish (w, X) from (w0, X 0). This
property has been successfully exploited using neural net-
works for full phase-space Monte Carlo reweighting and
parameter estimation [18, 22–26]. Here, we use neural
network classifiers to iteratively reweight the particle-
and detector-level Monte Carlo weights, resulting in an
unfolding procedure.

The OmniFold technique is illustrated in Fig. 1. In-
tuitively, synthetic detector-level events (“simulation”)
are reweighted to match experimental data (“data”), and
then the reweighted synthetic events, now evaluated at
particle-level (“generation”), are further reweighted to
estimate the true particle-level information (“truth”).
The starting point is a synthetic Monte Carlo dataset
composed of pairs (t, m), where each particle-level event
t is pushed through the detector simulation to obtain a
detector-level event m. Particle-level events have initial
weights ⌫0(t), and when t is pushed to m, these become
detector-level weights ⌫push

0 (m) = ⌫0(t). OmniFold it-
erates the following steps:

1. !n(m) = ⌫push
n�1 (m) L[(1, Data), (⌫push

n�1 , Sim.)](m),

2. ⌫n(t) = ⌫n�1(t) L[(!pull
n , Gen.), (⌫n�1, Gen.)](t).

The first step yields new detector-level weights !n(m),
which are pulled back to particle-level weights !pull

n (t) =
!n(m) using the same synthetic pairs (t, m). Note that
⌫push and !pull are not, strictly speaking, functions be-
cause of the multi-valued nature of the detector simula-
tion. The second step ensures that ⌫n is a valid weighting
function of the particle-level quantities.

Assuming ⌫0(t) = 1, in the first iteration Step 1 learns
!1(m) = pData(m)/pSim.(m), which is pulled back to the
particle-level weights !pull

1 (t). Step 2 simply converts

the per-instance weights !pull
1 (t) to a valid particle-level

weighting function ⌫1(t). After one iteration, the new
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FIG. 1. An illustration of OmniFold, applied to a set of syn-
thetic and natural data. As a first step, starting from prior
weights ⌫0, the detector-level synthetic data (“simulation”) is
reweighted to match the detector-level natural data (simply
“data”). These weights !1 are pulled back to induce weights
on the particle-level synthetic data (“generation”). As a sec-
ond step, the initial generation is reweighted to match the new
weighted generation. The resulting weights ⌫1 are pushed for-
ward to induce a new simulation, and the process is iterated.

induced truth is:

⌫1(t) pGen.(t) =

Z
dm0 pGen.|Sim.(t|m0) pData(m

0). (4)

This is a continuous version of IBU from Eq. (2), where
the sum has been promoted to a full phase-space inte-
gral. In fact, OmniFold (and IBU) are iterative strate-
gies that converge to the maximum likelihood estimate
of the true particle-level distribution [27–31], which we
discuss in detail in the Appendix. After n iterations, the
unfolded distribution is:

p(n)
unfolded(t) = ⌫n(t) pGen.(t). (5)

The unfolded result can be presented either as a set of
generated events {t} with weights {⌫n(t)} (and uncer-
tainties) or, more compactly, as the learned weighting
function ⌫n and instructions for sampling from pGen..

To demonstrate the versatility and power of Omni-
Fold, we perform a proof-of-concept study relevant for
the LHC. Specifically, we unfold the full radiation pat-
tern (i.e. full phase space) of jets, which are collimated
sprays of particles arising from the fragmentation and
hadronization of high-energy quarks and gluons. Jets
are an ideal environment in which to benchmark unfold-
ing techniques, since detector e↵ects often account for
a significant portion of the experimental measurement
uncertainties for many jet substructure observables [32].
With the radiation pattern unfolded, one can obtain the
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (Sim./Gen.), unfolded with OmniFold and compared to IBU.OmniFold matches or exceeds the unfolding performance
of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas unfolding
with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

unfolded distribution of any observable using Eq. (5).
Hence, this procedure can be viewed as simultaneously
unfolding all observables.

Our study is based on proton-proton collisions gener-
ated at

p
s = 14 TeV with the default tune of Her-

wig 7.1.5 [33–35] and Tune 26 [36] of Pythia 8.243 [37–
39] in order to study a challenging setting where the “nat-
ural” and “synthetic” distributions are substantially dif-
ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [40] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [41] implemented in
FastJet 3.3.2 [42, 43]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
pZ

T > 200 GeV. After applying the selections, we obtain
approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used

for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [44, 45] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1) = F

⇣PM
i=1 �(pi)

⌘
for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle
�, and particle identification code [46], restricted to the
experimentally-accessible information (PFN-Ex [44]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [44] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [47].
Neural networks are trained with Keras [48] and Tensor-
Flow [49] using the Adam [50] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [51]. The
first four are jet mass m, constituent multiplicity M , the

Full phase space unfolding detector->particle level
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ML for Theory
Modern ML is also making inroads into Theory


• ML4Lattice Snowmass WP [2202.05838]


• Symbolic tasks (regression, learning physical laws, simplification)


• … 28
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Eg using NFs to sample efficiently from lattice configurations
7

�

�

�

�

�

�
� � �

�

�

�

�

�

�

�

�

�

�

�
� � �

�

�

�

�

�

�

�

�

�

�

�
� � �

�

�

�

�

�

� HMC � Local � ML

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0.02

0.03

0.04
0.05
0.06

FIG. 3: Zero-momentum Green’s functions evaluated for pa-
rameter set E5. Results computed using 106 configurations
from the HMC, local Metropolis, and machine-learned (ML)
ensembles are consistent within statistical errors. Error bars
indicate 68% confidence intervals estimated using bootstrap
resampling with bins of size 100.

FIG. 4: E↵ective pole masses evaluated for parameter set E5,
defined by the arccosh estimator given in the main text. Re-
sults computed using 106 configurations from the HMC, local
Metropolis, and machine-learned (ML) ensembles are consis-
tent within statistical errors. Error bars indicate 68% con-
fidence intervals estimated using bootstrap resampling with
bins of size 100.

An exhaustive study of the optimal choice of prior dis-
tribution r(z), model depth, architecture and initializa-
tion of the neural networks, and of the mode of cou-
pling of the a�ne layers, is beyond the scope of this
proof-of-principle study. The parameters used here, how-
ever, proved to define su�ciently expressive models such
that the Metropolis-Hastings algorithm applied to out-
put from the trained models easily achieved acceptance
rates of well over 50%. With further investment in hyper-
parameter optimization, higher rates of acceptance could
be achieved. In any Markov chain using the Metropolis-
Hastings algorithm, there is a tradeo↵ between compu-
tational cost and correlations resulting from low accep-
tance rates. The optimal acceptance rate minimizes the
cost per decorrelated sample from the chain. Here, the
cost of training, and not just model evaluation, must be
considered, and the optimal level of training in future
applications will depend on many factors, such as the
desired ensemble size.

For each set of parameters studied, instances of the
model were trained to reach both 50% and 70% aver-
age Metropolis acceptance. Figure 2 shows histograms of
the number of updates between accepted configurations
for models at both levels of training. Models trained to
reach the higher acceptance rate are seen to have shorter
runs of consecutive rejections. Because autocorrelation
is related to rejections by ⇢(⌧)/⇢(0) = p⌧rej for indepen-
dence Metropolis sampling, a reduced frequency of re-
jection runs with length longer than ⌧ directly implies a
reduction in ⇢(⌧)/⇢(0). Implications for critical slowing
down of the generation of decorrelated configurations are
discussed in Section III C.

For comparison, ensembles of 106 lattice configura-
tions were generated using the machine-learned models
in flow-based MCMC as well as standard local Metropo-

lis [47] and Hybrid Monte Carlo (HMC) [48] algorithms
at matched parameters. The local Metropolis algorithm
employed a fixed order of sequential updates to each site,
with proposed updates to �(x) sampled uniformly from
the interval [�(x)� �,�(x)+ �] followed by a Metropolis-
Hastings accept/reject step; for all parameters consid-
ered, the width � was tuned to achieve a 70% accep-
tance rate. The HMC method was implemented using
a leapfrog integrator with a fixed division of trajectory
length ⌧ into 10 steps; the trajectory length ⌧ was also
tuned to achieve a 70% acceptance rate. In both the local
Metropolis and HMC methods, samples were saved after
every 10th update.

B. Tests: physical observables and error scaling

Since the flow-based MCMC algorithm satisfies ergod-
icity and balance, it is guaranteed to produce samples
from the desired probability distribution in the limit of
an infinite chain. To test the performance of the algo-
rithm for a finite number of samples, each of the physical
observables defined above was computed on ensembles
of configurations at the parameters of Table I, generated
both using standard HMC and local Metropolis methods,
as well as with the trained flow-based MCMC algorithm.
Figures 3–5 compare the observables computed on en-
sembles generated using all three methods.
To estimate the pole mass mp, an e↵ective mass is

defined based on the zero-momentum Green’s functions
at various time separations:

m
e↵
p
(t) = arccosh

 
G̃c(0, t� 1) + G̃c(0, t+ 1)

2G̃c(0, t)

!
. (28)

For all observables, the values computed using the flow-

from 1904.12072

https://arxiv.org/abs/2202.05838
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What the future holds?



Summary

• Modern ML is a powerful new tool that enables qualitatively new kinds of 
physics analyses that weren’t possible before. 


• Modern ML holds enormous potential for new physics searches, triggering, 
fast simulation, instrumentation, theory and more. 


• There has been an explosion of development of new methods and proofs-of-
concept. Many of these are beginning to be ported over to real data. 

30



Outlook
I believe we are witnessing the dawn of a new era of data-driven physics…


…and also the dawn of a new kind of physicist — the “data physicist”. 
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Theory Experiment

Data Science

These are exciting times for ML and HEP!


