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Modern machine learning is not physics.

Rather, it is a powerful new tool which will enable us to do new kinds of
physics that we couldn’t do before.

» Calculus => Classical mechanics
* Linear algebra => Quantum mechanics
* Group theory => Standard Model

o Statistics => Experimental Design

What new fields and

 Modern Machine Learning => ? : : .
discoveries await*
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Modern Machine Learning

How will modern ML enable new kinds of physics?

With modern ML, we can extract more information from data than ever before.

Data: “"events” x. € R? drawn iid from some distribution

+ All the information contained in the data is contained in p(x).

« Generally, the underlying p(x) of the data is unknown.

e Modern ML can access p(x) (explicitly or implicitly) from data, even for very
high dimensional x!



Modern Machine Learning

In what ways can modern ML access the full likelihood of the data”

« p(x) itself [density estimation, eg Normalizing Flows]
 conditional densities p(x|y) [conditional density estimation, also NFs]
« sampling from p(x) [generative modeling, eg GANs, VAEs, NFs]

» ratios of densities p,(x)/p,(x) [classification, eg CNNs, RNNs, transformers, GNNs, ...]



Modern Machine Learning

Modern Machine Learning will enable us to extract much more physics from
data than ever before

Data *

* Opens up entirely new frontiers in data analysis

Modern

Machine Learning

* Qualitatively new kinds of physics analyses that weren’t possible before

A Golden Era of method development, proofs-of-concept and new results



Modern Machine Learning

Modern Machine Learning will enable us to extract much more physics from

data than ever before
/ New physics searches

Modern Triggering
Data »

Machine Leaming \ Fast simulation
Instrumentation

Measurement

Apologies in advance if | can’t cover everything in this talk!!
Theory
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ML for New Physics Searches

Future Organization of Physics Analysis Groups at the LHC??

B2G /
Model HDBS
Agnostic?

Supporting
organizations

Search
Groups

Measurement
Groups

from 2101.08320

The vast majority of LHC searches for Why aren’t there more model-agnostic
new physics are very model specific new physics searches?


https://arxiv.org/abs/2101.08320

ML for New Physics Searches

https://arxiv.org/abs/2105.14027

The LHC Olympics 2020 The Dark Machines Anomaly Score Challenge:

A Community Challenge for Anomaly Benchmark Data and Model Independent Event
Detection in High Energy Physics

Classitication for the Large Hadron Collider
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A. Faroughy!® Julia Gonski,? Philip Harris,"* Alan Kahn,? Jernj F. Kamenik, 51 A lot of community interest in model-agnostic NP
Charanijit K. Khosa,?’3° Patrick Komiske,?! Luc Le Pottier,>?? Pablo '
Martin-Ramiro,??3 Andrej Matevc,®' Eric Metodiev,?' Vinicius Mikuni,'® Inés SearCheS.

Ochoa,?* Sang Eon Park,'® Maurizio Pierini,?> Dylan Rankin,'® Veronica Sanz,?0:26
Nilai Sarda,?” Uros Seljak,?3'? Aleks Smolkovic,® George Stein,?'? Cristina Mantilla
Suarez,” Manuel Szewc,?® Jesse Thaler,?! Steven Tsan,!” Silviu-Marian Udrescu,!®
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https://arxiv.org/abs/2101.08320 many new apprOaCheS usSing modern ML
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ML for New Physics Searches

from 2109.00546

. k : | "E— : ’ ‘,,
a.u.‘>\‘\ i i
NS i
\"N., i i
T. Encoder Decoder : x\(-i‘?:& E
-:;T
from 1808.08992 SB SR SB -
data(T|m € SB data(T|m € SB
Autoencoders panaleln €S0 pguatolm e i) Panaleln € SB)
Fully unsupervised
Sensitive to outliers (low p(x))
Farina, Nakai & DS 1808.08992 Enhanced bump hunts
Heimel et al 1808.08979 Weakly supervised
and many more!! Sensitive to overdensities (high p ;,,,(X)/Pp (X))

CWolLa Hunting [Collins, Howe & Nachman 1805.02664, 1902.02634]
ANODE [Nachman & DS 2001.04990]
CATHODE [Hallin et al 2109.00546]
CURTAINS [Raine et al 2203.094/0]
and more... 10
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ML for New Physics Searches

Proofs-of-concept are becoming actual LHC searches!

Events / 100 GeV

Significance

CWolLa Hunting
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ML for New Physics Searches

Proofs-of-concept are becoming actual LHC searches!

CWolLa Hunting

ATLAS PRL 125 131 801 (2020) ATLAS_I?;IgNN;/_Aé%QQ_()45

1045_ ATLAS _E > 10 | | | | | | | | |
- \'s A13TeV 139 fb’ i:::)i?ta . S 1025 Data ATLAS Preliminary 3
1' " " "
: * Beginning of a big wave?
S 1
¢« Many more analyses from ATLAS and CMS on the way!
 Enormous discovery potential about to be tapped!
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Fast ML for Online Anomaly Detection

* ML for triggers and DAQ used since the 90s (CDF, H1); widely used at LHC at
both L1 and HLT

* New avenue with modern ML: anomaly detection at trigger level

anomaly score > threshold

Keep event

\ Discard event

anomaly score < threshold

Events * Fast anomaly

detection

13



Fast ML for Online Anomaly Detection

* ML for triggers and DAQ used since the 90s (CDF, H1); widely used at LHC at
both L1 and HLT

* New avenue with modern ML: anomaly detection at trigger level

 Autoencoders for anomaly detection at trigger level [Cerri et al 1811.10276, Knapp et al
2005.01598, Dillon et al 2206.14225, ...]

 Autoencoders on FPGAs for L1T [Govorkova et al. 2108.039806]

* Double Decorrelated Autoencoders for anomaly detection and background estimation
at trigger level [Mikuni, Nachman & DS 2111.06417]

14



Fast ML for Online Anomaly Detection

@ Welcome to the Unsupervised New Physics detection at 40 MHz

'S\, Anomaly Detection

; en In this challenge, you will develop algorithms for detecting New Physics by reformulating the problem as an
out-of-distribution detection task. Armed with four-vectors of the highest-momentum jets, electrons, and
muons produced in a LHC collision event, together with the missing transverse energy (missing E.), the goal is
to find a-priori unknown and rare New Physics hidden in a data sample dominated by ordinary Standard

Model processes, using anomaly detection approaches.

Real-time event filtering

The algorithms are intended to be deployed in the first stage of the real-time event filter processing system of
LHC experiments (Level 1 or L1 trigger), where the available bandwidth, latency and resources are strictly
limited. Such limitations constrain the design of the algorithm. To emulate the constraints in terms of
bandwith only the leading 10 jets, 4 muons, 4 electrons and the missing E will be provided to be used as input
to the algorithm. Furthermore, only a maximum number of bits is available for the representation of the n, ¢,

and the transverse momentum p_. of each physics object. The effect of such quantization of the inputs can be

studied for instance with QKeras (see below).

Ongoing data challenge for Fast Anomaly Detection [2107.02157]

Organizers: Govorkova, Puljak, Ngadiuba, Pierini, Aarrestad
Deadline: ML4dets2022@Rutgers in November 15



https://mpp-hep.github.io/ADC2021/
https://arxiv.org/abs/2107.02157

Fast ML for Online Anomaly Detection

Crazy idea: what if we could replace LHC with a generative model?

Online

ONLINEFLOW

HL Trigger

OL
ee > ©
o/

Butter, Diefenbacher, Kasieczka,

E generate
. synthetic
. events |

save
few

|
events :

Offline

Analysis

Train generative model (eg Normalizing Flow)
on every event (or every event after L1T).

If generative model is perfect, we have
successfully encoded SM (plus any NP in the
data)!

Can potentially discard LHC (after all the
data is taken) and just perform offline
analysis on events from generative model?!

Nachman, Plehn, DS & Winterhalder 2202.09375

16
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Fast ML for
Surrogate Modeling




https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
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Fast ML for Surrogate Modeling

B I I I I I I I I I I I I I I I I I
. CMS Public
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n /"
B S "‘Q#a_
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Year

Detector simulation (GEANT4) and event generation (MG5, Pythia, Herwig, ...)

ATLAS Preliminary

2022 Computing Model - CPU: 2031, Conservative R&D
24%

7%

8%

8%

CERN-LHCC-2022-005

7%

8%

1%

Tot: 33.8 MHSO6*y

Data Proc
MC-Full(Sim)
MC-Full(Rec)
MC-Fast(Sim)
MC-Fast(Rec)
EvGen
Heavy lons
Data Deriv
MC Deriv
Analysis

are major — and growing — bottlenecks at LHC and other experiments

18
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Fast ML for Surrogate Modeling

GEANT4 100 events SLOW but ACCURATE

GEANT4 10° events Surrogate model

(GAN, VAE, Normalizing Flow, ...)
Learn underlying distribution of GEANT4 events
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Fast ML for Surrogate Modeling

GEANT4 100 events SLOW but ACCURATE

GEANTA4 10° events Surrogate model 1019 events

(GAN, VAE, Normalizing Flow, ...)
Learn underlying distribution of GEANT4 events

FAST and ACCURATE?

ML methods can provide fast and accurate “surrogate models” for GEANT4 etc

e Snowmass WP — detector sim — 2203.08806

« Snowmass WP — event generation — 2203.07460

19
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Fast ML for Surrogate Modeling

ML methods are achieving impressive performance on high-dimensional

surrogate modeling tasks

CaloFlow [Krause & DS, 2106.05285, 2110.11377]
— first ever GEANT4 surrogate model based on
normalizing flows
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Toy ATLAS ECAL from CaloGAN [Paganini, de Oliveira & Nachman
1705.02355, 1712.10321] — 3 layers, 504 voxels

AUC | GEANT4 vs. CaloGAN | GEANT4 vs. CaloFlow
et 1.000(0) 0.847(8)
y 1.000(0) 0.660(6)
al 1.000(0) 0.632(2)

First to ever pass the “ultimate classifier metric” test

] 107
1004 —— GEANT 4
CaloFlow v1 - 106
10° 3 CaloFlow v2 107
108 : CaloGAN
A, 7 pd ==,
O 10 3 ,,,,/,:rff"'/”{::? 3 9
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Generated Showers

10* X faster than GEANT4!
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https://arxiv.org/abs/2110.11377

Fast ML for Surrogate Modeling

Bib-AE Buhmann et al [2005.05334, 2112.09709]
Combination of VAE and GAN

Input

Sampling

Encoder

Z

Intermediate @ —

Decoder

_<_>_.

ifference Levis Diff
e riticDi

el

Output
Post Processor e
Network
LC TTTTT
—— | MSE |—
MMD |[—

y [cells]

y [cells]

visible cell energy [MIPs]
101 109 10! 102

101;;;;//

S 1072
> |

full spectrum

— Geant4
kY - - GAN
/////——EBAEPP
1072 10! 10° 10!

visible cell energy [MeV]

30x30x30 = 27,000 voxels ILD prototype (similar scale to CMS HGCAL)

— current frontier in dimensionality
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Fast ML for Surrogate Modeling

Fast Calorimeter Simulation Challenge 2022

View on GitHub

Welcome to the home of the first-ever Fast Calorimeter Simulation Challenge!

The purpose of this challenge is to spur the development and benchmarking of fast and high-fidelity

calorimeter shower generation using deep learning methods. Currently, generating calorimeter

showers of interacting particles (electrons, photons, pions, ...) using GEANT4 is a major computational

bottleneck at the LHC, and it is forecast to overwhelm the computing budget of the LHC experiments

in the near future. Therefore there is an urgent need to develop GEANT4 emulators that are both fast - - - -
(computationally lightweight) and accurate. The LHC collaborations have been developing fast

simulation methods for some time, and the hope of this challenge is to directly compare new deep O n g O I n g d ata c h a I I e n g e fo r fa st ca I o rl m ete r S I m u I atl O n

learning approaches on common benchmarks. It is expected that participants will make use of

cutting-edge techniques in generative modeling with deep learning, e.g. GANs, VAEs and normalizing
flows.

This challenge is modeled after two previous, highly successful data challenges in HEP - the top

Organizers: Giannelli, Kasieczka, Krause, Nachman, Salamani, DS, Zaborowska

Datasets

The challenge offers three datasets, ranging in difficulty from “easy” to "medium" to “hard”. The
difficulty is set by the dimensionality of the calorimeter showers (the number layers and the number

of voxels in each layer). 3 d ataS etS :

Each dataset has the same general format. The detector geometry consists of concentric cylinders
with particles propagating along the z-axis. The detector is segmented along the z-axis into discrete

layers. Each layer has bins along the radial direction and some of them have bins in the angle a. The PS 1 ) ﬁ. . | AT LAS C | S - ~ 1 ()2 |
number of layers and the number of bins in r and a is stored in the binning .xml files and will be read easy _ O I C I a a O I m Voxe S
out by the HighLevelFeatures class of helper functions. The coordinates Ay and An correspond to the

x- and y axis of the cylindrical coordinates. The image below shows a 3d view of a geometry with 3

layers, with each layer having 3 bins in radial and 6 bins in angular direction. The right image shows PY L m ed i u m 73 — G EANT4 exam p | e d etecto r (~ 1 ()3 VOX@IS)

the front view of the geometry, as seen along the z axis.

e “hard” — GEANT4 example detector (~1()4 voxels)

: Deadline: ML4Jets2022@Rutgers in November

At_‘)

https://calochallenge.github.io/homepage/ 22
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Other new avenues for ML in HEP



ML for Instrumentation

Optimizing detector design

Fully differentiable surrogate model => could be very useful in designing
experiments

e MODE collaboration WP “End-to-End
Optimization of Particle Physics
Instruments with Differentiable

Programming” 2203.13818

N | | * See also Al-assisted design of EIC
| | ia detector [Fanelli et al 2205.09185]

Particle Detector  \I' " Datector |- ecog:::?on \ Differentiable Analysis Y

model A reconstructed  model

JEVEIRERUERN _simuiation |
response A

from 2203.13818
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reward

ML for Instrumentation

Accelerator/detector operations [: L comnecrons |

parameter 0 [ BPMS ]

\_ y _ y
observation

from Kain et al

 Many promising applications of Reinforcement Learning to real-time accelerator
operations

« Pang et al “Autonomous Control of a Particle Accelerator using Deep Reinforcement Learning” 2010.08141

 St. John et al “Real-time Artificial Intelligence for Accelerator Control: A Study at the Fermilab Booster” 2011.07371

 Kain et al “Sample-efficient reinforcement learning for CERN accelerator control” Phys.Rev.Accel.Beams 23 (2020) 12, 124801
« Scheinker et al “Advanced Control Methods for Particle Accelerators (ACM4PA) 2019 Workshop Report” 2001.05461

e “self-driving triggers”

 Bartoldus et al Snowmass WP 2203.07620
Y. Chen et al., “Self-driving data trigger, filtering, and acquisition”, Snowmass LOI (2020)

» “self-driving telescopes”

 Nord et al, “Cycle and symbiosis: Al and Cosmology intersect to produce new knowledge and tools”, Snowmass LOI (2020)


https://arxiv.org/abs/2010.08141
https://arxiv.org/abs/2011.07371
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.23.124801
https://arxiv.org/abs/2001.05461
https://arxiv.org/abs/2203.07620

ML for Measurements

Potential for performing measurements using full unbinned phase space

“Simulation based inference”
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Simulation Machine Learning

Cranmer, Brehmer, Louppe 1911.01429

Brehmer & Cranmer 2010.06439
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ML for Measurements

Potential for performing measurements using full unbinned phase space

“Omnifold”

Andreassen et al 1911.09107

Full phase space unfolding detector->particle level
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Particle-level
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ML for Theory

Modern ML is also making inroads into Theory

ML4Lattice Snowmass WP [2202.05838]

Eg using NFs to sample efficiently from lattice configurations

~

G.(0,1)

0.06 |
0.05
0.04 |

- HMC = Local = ML

0.03F

0.02|

01 23456 7 8910111213 t
from 1904.12072

Symbolic tasks (regression, learning physical laws, simplification)

(log prob =-6107)

likely
(log prob = 22)

likely E =

(log prob = 5) ey
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https://arxiv.org/abs/2202.05838
https://arxiv.org/abs/1904.12072

ML for Theory

What the future holds?
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Summary

 Modern ML is a powerful new tool that enables qualitatively new kinds of
physics analyses that weren’t possible before.

» Modern ML holds enormous potential for new physics searches, triggering,
fast simulation, instrumentation, theory and more.

 There has been an explosion of development of new methods and proofs-of-
concept. Many of these are beginning to be ported over to real data.
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Outlook

| believe we are witnessing the dawn of a new era of data-driven physics...

...and also the dawn of a new kind of physicist — the “data physicist”.

Data Science

These are exciting times for ML and HEP!
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