The Physics case for Energy Frontier Discovery Machines

Simone Pagan Griso (LBNL)

Snowmass Community Summer Study Workshop Seattle, July 23rd 2022

Building the Standard Model

Colliders at the Energy Frontier have been instrumental in understanding the building blocks of the Standard Model (SM) of Particle Physics

Building the Standard Model

Colliders at the Energy Frontier have been instrumental in understanding the building blocks of the Standard Model (SM) of Particle Physics

Keys to success

Keys to success

Keys to success

The (current) Standard Model is not enough!

Big Questions

Evolution of early Universe
Matter Antimatter Asymmetry
Nature of Dark Matter
Origin of Neutrino Mass
Origin of EW Scale
Origin of Flavor

Exploring the Unknown

The (current) Standard Model is not enough!

Plenty of extensions of the Standard Model have the potential of addressing these questions, including the ones we haven't thought of yet

Most pointing to higher energy scales where new particles will manifest

Probes and Signatures of new physics at colliders

With such an exciting and vast landscape of possibilities, the **breadth of the experimental program** is of paramount importance

Colliders offer the unique ability to probe, with a single experimental setup, all sectors of the SM and its extensions

The Large Hadron Collider

Beyond LHC

Beyond LHC

HL-LHC: our upcoming Energy-Frontier Collider

Operation: 2029 to ~2040

Only a fraction of the p-p center-of-mass energy is transferred through the hard-scattering interaction

=> Large integrated luminosity allows access to higher energy scales as well

And more: new auxiliary experiments at HL-LHC can further boost its discovery potential!

How to reach even higher center-of-mass energy?

multi-TeV lepton-hadron colliders also considered, not discussed here

How to reach higher center-of-mass energy?

pp

 $\mu^+\mu^-$

- Large collider ring, stronger magnets
 - re-use FCC-ee/SpeC tunnel

$$p \propto qB\rho$$

 Need large statistics (luminosity) to sample highest energy scales

	FCC-hh	SppC
Center-of-mass [TeV]	100	75 (125-150)
Circumference [km]	91	100
Luminosity [/ab/yr] / IP	3	~1

How to reach higher center-of-mass energy?

pp

e⁺e⁻

 Large synchrotron radiation implies linear accelerator

$$P_{
m loss} \propto q^2 \gamma^4$$

- Need large acceleration gradients
- Low physics backgrounds, easier event reconstruction
- yy technically preferred, but physics less studied

	ILC/CLIC/CCC	Wakefield Accelerators
Center-of-mass [TeV]	3	15
Length [km]	27-59	1.3 - 18
Luminosity [/ab/yr]	0.6	~1.3

How to reach higher center-of-mass energy?

pp

 $\mu^{+}\mu^{-}$

- Large community interest during Snowmass
 - ~40 EF contributed papers
 - > 60 early-career authors in forum report
- Expect large beam-induced background (τ₀^μ~2μs)
- Low physics backgrounds
- In principle scalable to even higher energies

	MuC-3	MuC-10
Center-of-mass [TeV]	3	10 (14)
Circumference [km]	4.5	10
Luminosity [/ab/yr]	0.2	2

Lepton vs Hadron colliders: expected signals

<u>Protons</u>: involve scattering of constituents (partons)

Leptons: full center-of-mass energy available in collisions*

Practically, a lot of details that depend on the specific process, hence the need for a broad set of studies

Not a "simple" jump in Energy

Moving to ~10 TeV parton/lepton energy scale has qualitative new features

Just 1/100s examples: new dominant production mechanisms

Not a "simple" jump in Energy

Moving to ~10 TeV parton/lepton energy scale has qualitative new features

Just 2/100s examples: detectors

New technology to develop detectors able to extract the full physics potential

Radiation Hardness

Adapted from: Eur. Phys. J. ST 228 (2019) 4, 755

More than x10 than HL-LHC at FCC-hh

requires robust R&D

Event Reconstruction

Unprecedented complexity:

- innovative algorithms / detectors' layouts
- O(10)ps timing information

Proved feasibility of full event reconstruction in a muon collider detector with detailed simulations

How (When) do we get there?

Proposal Name	CM energy	Lum./IP	Years of	Years to
1000	nom. (range)	@ nom. CME	pre-project	first
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	R&D	physics
Muon Collider	10	20	>10	>25
	(1.5-14)			
LWFA - LC - $\gamma\gamma$	15	50	>10	>25
(Laser-driven)	(1-15)			
PWFA - LC - $\gamma\gamma$	15	50	>10	>25
(Beam-driven)	(1-15)			
Structure WFA - LC - $\gamma\gamma$	15	50	>10	>25
(Beam-driven)	(1-15)			
FCC-hh	100	30	>10	>25
SPPS	125	13	>10	>25
	(75-125)			

from Snowmass AF Implementation Taskforce

- None of these colliders is happening tomorrow
- Critical to address as quickly as possible the key R&D challenges

Physics Beyond the Standard Model

These colliders have enormous potential to answer fundamental questions!

Group our guide to physics beyond the SM in three categories

- 1. Observed phenomena lacking a fundamental explanation
- Dark Matter
- Matter-Antimatter asymmetry in the Universe
- Origin of neutrinos masses
- ...
- 2. Guiding theoretical principles
- Natural energy scale "cut-offs"
- Flavor structure of the SM
- ...
- 3. Unexpected new phenomena
- Historically have opened roads to revolutionary discoveries

Dark Matter at Colliders

Aim to create Dark Matter in laboratory and study its properties in detail

- very complementary to searches in the cosmic frontier!
- WIMP, Mediator searches, Beyond-WIMP

Example: WIMP in minimal models

- Non-baryonic matter, no EM interactions observed (dark), ~84% of matter
- Evolution of dark matter density regulated by production/annihilation processes

$$\Omega_{\chi} h^2 \simeq const. \cdot \frac{T_0^3}{M_{\rm Pl}^3 \langle \sigma_A v \rangle} \simeq \frac{0.1 \text{ pb} \cdot c}{\langle \sigma_A v \rangle}$$

Typical EWK cross-section from unrelated quantities

- In a minimal weakly-interactive model, DM is part of a EWK multiplet
 - Fixing its structure allows to compute rates
 - Comparing with observed density can derive a target DM particle mass

Need multi-TeV colliders to arrive to this natural target

[I have] A dream... and the importance of flexibility!

[I have] A dream... and the importance of flexibility!

[I have] A dream... and the importance of flexibility!

Exploring the unknown: new forces

Probe mediator of new forces to the tens of TeV range!

High Energy <-> High Luminosity <-> High Precision

HE machines, with appropriate detector, are also precision measurement devices!

	H factories	l^+l^- @ 3 TeV	l^+l^- @ 10 TeV	pp @ 100 TeV
# Higgs bosons	~10 ⁶	~5·10 ⁶	10 ⁷	~10 ¹⁰

Obviously an over-simplification, control of systematics and physics background play very important roles!

Extremely rare process: only multi-TeV colliders can probe it accurately

collider	Indirect- $h_{\rm SM}$	$h_{ m SM}h_{ m SM}$	combined
HL-LHC [27]	100 200%	50%	50%
ILC_{250}/C^3 -250 [20, 17]	49%	-	49%
ILC_{500}/C^3 -550 [20, 17]	38%	20%	20%
ILC_{100}/C^3 -1000 [20, 17]	36%	10%	10%
$CLIC_{380}$ [22]	50%	_	50%
$CLIC_{1500}$ [22]	49%	36%	29%
$CLIC_{3000}$ [22]	49%	9%	9%
FCC-ee [23]	33%	_	33%
FCC-ee (4 IPs) [23]	24%		24%
FCC-hh [28]	-	2.9 - 5.5%	2.9 - 5.5%
$\mu(3 \text{ TeV}) [26]$	28	15 30%	15 30%
$\mu(10 \text{ TeV}) [26]$	3-5%	4%	4%

Solutions to the hierarchy problem

$$M_H^2 = M_{\text{tree}}^2 + \left(\underbrace{ \begin{matrix} H \\ H \end{matrix} }_{H} \right) + \left(\underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \left(\underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \left(\underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \left(\underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \left(\underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \\ H \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \end{matrix} }_{\overline{L}} \right) + \underbrace{ \begin{matrix} T \end{matrix} }_{\overline{L}} \right] + \underbrace{ \begin{matrix}$$

The unique scalar nature of the Higgs boson suggests new physics Testing the ≤ 10 TeV regime provides very strong tests of this arguments (other options are also possible)

Compositness

New "symmetries"

Higgs compositness

New constituents and inevitable a new "strong force" to bind them together

- Visible effects from direct searches as well as precision measurements
- Evaluated through sensitivity of effective Wilson coefficients

Supersymmetry

Long-sought for very good reasons

- alleviate hierarchy problem
- can provide a natural Dark Matter candidate
- fundamental in extensions that unify all forces (including gravity)

Large model-parameters space and vast phenomenology

Simplified classes of signatures

Full models with additional assumptions

Supersymmetry

Long-sought for very good reasons

- alleviate hierarchy problem
- can provide a natural Dark Matter candidate
- fundamental in extensions that unify all forces (including gravity)

Large model-parameters space and vast phenomenology

... and much MUCH more!

Vast program addressing the fundamental questions outlined and much more!

... and ability to react to signals found in low-energy experiments

Concluding...

The night sky

When the morning comes ...

When the morning (end of Snowmass) comes, it is important we find the resources to develop the tools that get us to those "stars" in the most effective way.

The Energy Frontier advocates for wide-range and strong R&D activities in Accelerator, Computing, Instrumentation, Theory and their intersections to ensure a robust program that will **enable multi-TeV colliders to become a reality**, and that is flexible enough to adapt to what we will (or will not) find along the way.

BACKUP

Keys to success: Theory <-> Experiments

Experimental breakthroughs and Theoretical advancements have both contributed to this success

Prediction of charm quark

Predicted to explain suppression of FCNC: BR($K^0 \rightarrow \mu\mu$) ~ 10^{-8}

Then discovered through direct production of J/Ψ

PRL 33, 1406 PRL 33, 1404 (1974)

Discovery of bottom quark

No obvious reason for a 3rd generation, still..

m(GeV)

Bottom quark discovery through production of Upsilon meson

Phys. Rev. Lett. 39, 252 (1977)

Keys to success: Precision measurements <-> Direct searches

Precision measurements can stress-test the Standard Model and ultimately point towards the energy scale we need for a discovery

Electroweak precision observables

Precision measurements of electroweak observables can over-constrain Standard Model parameters

- electroweak unification parameters link different observables
- sensitivity to virtual corrections if accuracy is high enough

e.g. sensitivity of W mass corrections to top and Higgs masses

Lepton-Hadron colliders

Proposals for electron-hadron (and muon-hadron) colliders as well!

Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$. e^-/e^+	$\mathcal{L}_{\mathrm{int}}$ ab ⁻¹
LHeC	ер	$1.3~{ m TeV}$		1
FCC-eh		$3.5~{ m TeV}$		2

- And synergy with the Electron-Ion collider (EIC) at BNL
- Improved measurements of proton parton distribution function
 - fundamental for precision measurements at hadron colliders!
- Direct discovery potential as well!

Guiding theoretical principles: the Hierarchy problem

Example: Naturalness

- The Higgs boson is the only fundamental scalar we found so far
- Intrinsic "unstable" mass corrections from virtual contributions

$$M_H^2 = M_{\text{tree}}^2 + \left(\begin{array}{c} H \\ H \end{array} \right) + \left(\begin{array}{c} t \\ H \end{array} \right) + \dots$$

$$\Delta M_H \sim \Lambda^2$$

Hierarchy problem

 $\Lambda \rightarrow$ scale where new physics enters

- Connected to: "Why the EWK scale is so much lower than e.g. Planck scale?"
- Additional contribution that (partially) cancel the divergency is needed

- The better the cancellation, the higher the need for additional energy scale is pushed on, it is therefore "natural" to expect some contribution near the EWK scale
- Multi-TeV colliders are needed to elucidate the hierarchy between EWK and Planck scales observed

Supersymmetry

Long-sought for very good reasons

- alleviate hierarchy problem
- can provide a natural Dark Matter candidate
- fundamental in extensions that unify all forces (including gravity)

Large model-parameters space and vast phenomenology

Supersymmetry

Long-sought for very good reasons

- alleviate hierarchy problem
- can provide a natural Dark Matter candidate
- fundamental in extensions that unify all forces (including gravity)
- ...

Large model-parameters space and vast phenomenology

Full models with additional assumptions:

pMSSM -> Minimal Supersymmetric model + external constraints + simplifying assumptions

Hypothetical scenario:

- Colored points: allowed parameter space after future precision measurements of H-bb (@1%) coupling.
- Solid lines: direct searches of an heavy Higgs

Multi-TeV colliders needed to extend reach beyond HL-LHC!

Auxiliary Experiments at the HL-LHC

HL-LHC auxiliary experiments: Heavy Neutral Leptons

Just one example out of many – strong synergy with Rare-Processes Frontier

HL-LHC auxiliary experiments: Higgs Portal

The Energy Frontier Vision

Resource needs and plan for the five year period starting 2025:

- 1. Prioritize HL-LHC physics program, including far-forward experiments,
- Establish a targeted e⁺e⁻ Higgs Factory detector R&D program for US participation in a global collider,
- Develop an initial design for a first stage Tev-scale Muon Collider in the US, with pre-CDR document at the end of this period,
- Support critical detector R&D towards EF multi-TeV Colliders.

Resource needs and plan for the five year period starting 2030:

- Continue strong support for the HL-LHC physics program,
- Support construction of a e⁺e⁻ Higgs Factory,
- Demonstrate principal risk mitigation and deliver CDR for a first stage TeV-scale muon collider.

Resource needs and plan after 2035:

- 1. Evaluate continuing HL-LHC physics program to the conclusion of archival measurements,
- Begin and support the physics program of the Higgs Factories,
- Demonstrate readiness to construct and deliver TDR for a first-stage TeV-scale muon collider,
- Ramp up funding support for detector R&D for EF multi-TeV Colliders.