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e HL-LHC will bring higher trigger rates, larger event sizes, longer processing times — greater demands on computing.
 What if this celebration is short-lived?



The HL-LHC resource gap
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* This is processing, similar concerns for disk and tape resources.

* A potential gap between the available computing resources and experiment needs is a tangible threat to

the HL-LHC physics program.

e But this risk can be reduced through sustained R&D that leverages technical advances in software and

computing.


https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
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What drives the needs?
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Other projects’ resource gaps?

e Early estimates of DUNE computing resource

needs becoming available.

* |In general, an order of magnitude smaller than

HL-LHC experiment needs.

* Specific concern: Treatment of large events

from supernovae.

* DUNE has yet to baseline the computing
budget, cannot yet know Iif there is a similar

resource gap.

e Lattice QCD: need resources 10x (!) faster than

planned exascale machines.

e Small experiments = small computing problems.
* As we will see, some resource gaps don’t

scale with project size.
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Technology evolution: heterogeneity

* Reaching the end of ~two decades of stability and uniformity in
processor architecture (x86).

* “Accelerators™: GPUs, tensor processors, FPGAs

 Can be more power efficient than CPUs, many many small
processing cores, becoming more common at computing

centers.

* Requires specialized programming techniques, re-casting of
existing software, expert support.

* Reaching the end of an era of grid computing in which all
computing centers looked alike.

* (Greater diversity of processing and storage systems.

* “High performance computing” (HPC) centers are funded and
operated from outside the HEP program and provide significant
“free” resources, with further growth expected.

 But each HPC center is configured differently, may have specific
participation rules, and requires expert support for usage.
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Technology evolution: machine learning

e |nsightful plenary talks about ML on Monday.

HEP has made use of multivariate technigues for
decades, but recent advances in machine learning
have made these approaches even more powerful
and provide new opportunities.

ML tools are particularly well matched with
accelerator processors.

Funding agencies are investing in ML and
physicists are excited about using these new tools.

Discriminator

I
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Random 7 Fake . . . .
s %— L all reconstruction and (fast) simulation algorithms;
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resource needs.


https://indico.fnal.gov/event/22303/sessions/20653/#20220718

Using accelerators

* Accelerators have great promise but need to be used efficiently to
maximize event throughput. Many considerations:

* Not all required algorithms are accelerator-friendly — need to balance
between accelerator and CPU.

* Expensive to reformat data and transfer it to accelerator, most efficient /
to do so for many sets of data = need to parallel process different  /
events. /

* Don’t want to leave the CPU idle while accelerator is working — need to
parallel process different parts of the event.

 Addressing this requires R&D into adopting multi-threaded processing frameworks that can
optimally manage the distribution of work across processors.

* And: every accelerator is different, requiring different programming approaches! Don’t know
what hardware you might get until run time.

* Portabillity libraries are key to reducing effort needed to enable heterogeneous processors.



Using HPCs

* Emerging exascale high-performance computing centers are new resources that can help close the gap.

* Such centers are already in use by the LHC experiments, but there are technical/sociological challenges in
using them maximally efficiently:

e Job submission infrastructure needs to scale up to high levels, 1M simultaneous jobs, or be restructured.
* Need system flexibility and operational ease to handle resources that are not uniform in configuration or

availability.
o , _ FNAL Theta @ ANL  Theta @ ANL
* HEP has limited (at best) input on HPC system design. (Ezse(%ode) (Mo%
e Some HPC allocations might be for a very specific period @
of time, or very specific scientific purposes. — C Lancher >
e Different HPCs might require different models for integration - -------------- G s @
with an experiment’s workflow management systems.
A

* Some HPCs have much more limited network connectivity @

than a typical grid computing site = tunnels, edge services. | I

* Great variety of processor architectures — portability again. omnate

___________________

* All issues need ongoing development and integration efforts. Theta worker node
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Some other top

ICS

 Wide-area network is as fundamental to distributed computing as processing and storage.

e Significant uncertainties about future bandwidth constra

INts.

e Many R&D projects around smarter use of networks, better integration into workflow systems, improved
onitoring.

» Raw detector data event size is an important driver of tape storage needs — store semi-processed data

with

lossy compression?

* Greater use of fast storage (SSDs) for storage-less sites, data caches within the network, high-throughput
analysis.

e Simulation R&D: Potentially disruptive ML-based R&D, more use of parameterization.
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Evolution > revolution

e Exploiting new technology is important, but significant reduction of the resource/needs
gap will come through continuing evolution of existing software, e.g.:

e Steady effort to improve code performance.
e Develop more compact data formats and motivate physicists to use them.

e Optimize detector-specific simulation and improve Geant4 performance.
* |mprove parameterized simulation and promote Its use.
e Optimize cuts/parameters for track reconstruction.
 Implement production versions of R&D prototypes.
e These approaches have yielded significant improvements in the past.

o All of this requires a sustained level of effort on “maintenance and operations”-like
tasks.
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Effort/expertise gap

Continual improvement required to advance software and computing systems requires
significant effort, even before considering additional effort for R&D that could have an
impact on reducing future computing needs.

e — We must invest in both.

Currently a limited number of people with the requisite expertise.
e — Need to invest here too, in education and training.

e Many ongoing efforts, need to get people engaged.

e Might be an even more critical issue for smaller experiments.
Software and computing lacks diversity, even more so than other areas of our field.

We also need to provide career paths for software/computing professionals, much like
we do now for engineers.

12


https://agenda.infn.it/event/28874/contributions/169194/attachments/94712/129777/Grand%20Challenge%20of%20Software%20Training%20in%20HEP%20-%20ICHEP%202022.pdf
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Closing our gaps

The gap between computing needs and resources is a real threat to the future particle
physics program.

This gap can be reduced and perhaps eliminated through R&D efforts already underway
that take advantage of new technologies.

Many promising pathways, but they require sustained investments of time and effort —
including effort for implementation and maintenance of R&D outcomes.

Not our only gaps: expertise, career paths, usabillity.
There are opportunities for you to get involved and make a difference!
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e Thanks to: Mat Adamec, Tulika Bose, Paolo Calafiura, Daniel Elvira, Steve Gottlieb,
Heather Gray, Oliver Gutsche, Dirk Hufnagel, Mike Kirby, David Lange, James Letts,
David Mason, Ben Nachman, Danilo Piparo, Heidi Schellman, Liz Sexton-Kennedy

e This is my first presentation in 16:9 mode!
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