

Seattle Snowmass Summer Meeting 2022

Collaborative Initiatives Across Experiment Boundaries

Liz Sexton-Kennedy

Community Summer Study SN & WMASS July 17-26 2022, Seattle

Fermilab

HEP Software Foundation

Introduction - WLCG

- Reflecting the global nature of HEP, we have a global umbrella computing organization in the World wide LHC Computing Grid
- The WLCG is an MOU-governed computing services organization. Originally (2006) for the LHC but recently has been expanded to service BELL2, DUNE, and Rubin

Data Transfer Video

Introduction - HSF

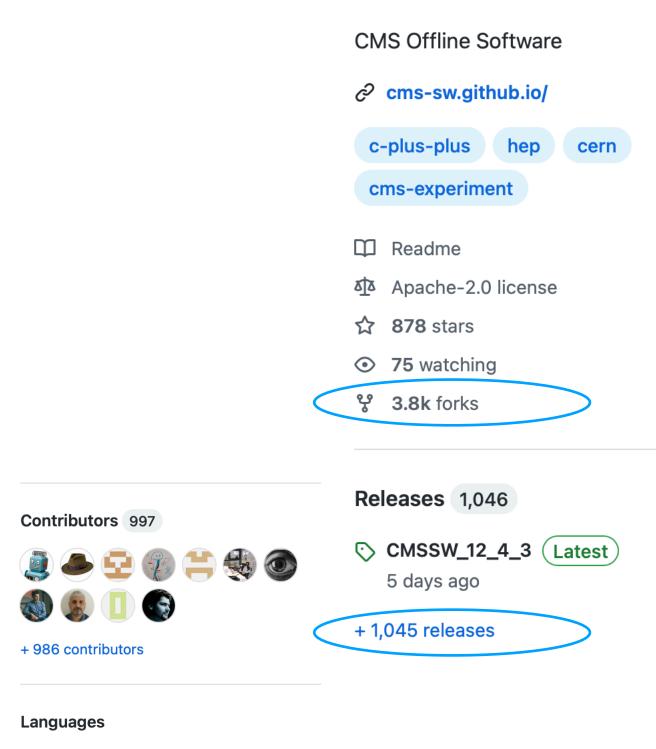
- Reflecting the global nature of HEP, we have a global umbrella software organization in the HEP Software Foundation, HSF.
- HSF does not itself seek funding, but supports bids to funding agencies for CWP:

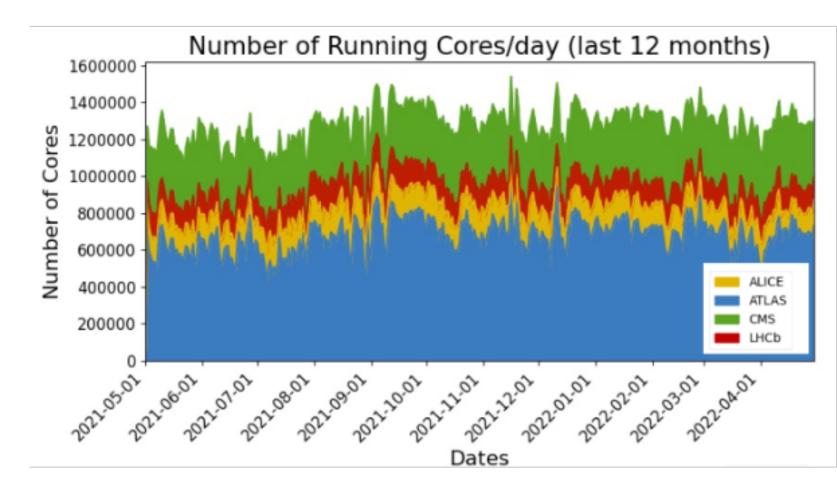
A Roadmap for HEP Software and Computing R&D for the 2020s

```
HEP Software Foundation Collaboration • Johannes Albrecht (Dortmund U.) Show All(310)
Dec 18, 2017
```

```
49 pages
Published in: Comput.Softw.Big Sci. 3 (2019) 1, 7
Published: Mar 20, 2019
e-Print: 1712.06982 [physics.comp-ph]
DOI: 10.1007/s41781-018-0018-8 (publication)
Report number: HSF-CWP-2017-01, HSF-CWP-2017-001, FERMILAB-PUB-17-607-CD
View in: OSTI Information Bridge Server, HAL Archives Ouvertes, CERN Document Server, ADS Abstract
Service
          ⊘ links
🔓 pdf
                      [ → cite
```

arXiv:1712.06982v5 [physics.comp-ph]


projects that align with the goals documented in the Community White Paper,



Introduction - Scale

- High Energy Physics has a vast investment in software
 - Estimated to be around 50M lines of C++
 - Which would cost more than 500M\$ to develop commercially
- S&C is a critical part of our physics production pipeline, from experimental design, to data collection (e.g. triggering), to data analysis/interpretation
- LHC experiments use about 1.4M CPU cores every hour of every day, we have around 1000PB of data with 1000PB of data transfers per year (10-100Gb links)
- This is a huge and ongoing cost in hardware and human effort and it should have broader impacts!

The Big Picture in the **10 Year Timescale**

- These initiatives are driven by:

 - Resource limitations in both people and services
- Adds up to an overwhelming challenge, hence the need to ban together and eliminate duplicate efforts
 - common efforts in software and computing across HEP in general

• The physics objectives of our experiments and the timeline of their data-taking

 Evolution of technologies we use: hardware (including GPUs, FPGAs, and TPUs), operating systems, Grid/Cloud, compilers, standard foundation libraries, and more

The established role of the HSF, since 2015, is to facilitate coordination and

Outline

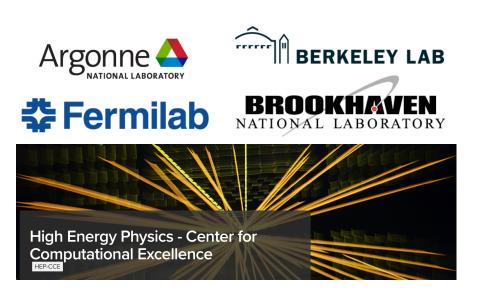
- Who has taken up the call of the CWP?
- What have they proposed to do?
- What are the opportunities?
- How are they coordinating with each other?
- Examples of community collaborative initiatives
- Conclusions

IRIS-HEP, NSF USA - 2018

Who?

ErUM-DATA, Helmholtz Institute Germany - 2019

19 universities + RAL


SWIFT-HEP, STFC 2020 and ExCALIBUR-HEP, UKRI UK - 2021

> Plus lots of single PI level programs and: DOE SciDAC **NSF** Institutes DOE Quantum Centers

OAK RIDGE

2 hardware projects (HEP&NP) SciDAC, ECP (ASCR) Brookhaven^{*} **Control** Brookhaven^{*} **Fermilab** Jefferson Lab

HEP-CCE, DOE USA - 2019

170 collaboration members - 2001

<u>EP R&D</u>, CERN - 2020

37 universities + 8 industry participants

AIDAInnova, European Commission EU -2021

What?

- Learning for reconstruction and simulation
- reconstruction, efficient analysis
- GPUs, FPGA tracking for HLT
- Cosmology and Accelerator modeling software
- Simulation

 OSG-LHC, Data Organization Management & Access, Analysis Systems & Facilities, Facilities R&D, Innovative Algorithms, Training

Heterogeneous computing and virtualized environments, Machine

Portable Parallelization Strategies, I/O Strategy on HPC, Event Generators

Turnkey software systems, faster simulation, track and calorimeter

Exascale data management, Event generators, Detector Simulation on

GPU offloading for Geant EM showers, and LQCD software/algorithms,

Turnkey software systems, Track Reconstruction, Particle Flow, ML

Opportunities

- efforts to grow.
- Some areas are more well covered then others
- Example: Portability Frameworks are a small part of the scope of the
- Example: GPU acceleration of Geant is covered; physics models are not
- When there are 2 research groups working on the same deliverable the HSF provides a forum to get them talking to each other.
 - Example is Adept and Celeritas have been fruitfully collaborating

• There is still plenty of scope left as laid out in the CWP, the field needs these

Frameworks topic, yet well covered... Integration with ML frameworks is lacking

Coordination

continued on as HSF & WLCG working groups.

WLCG Archival Storage Group

• WLCG Archival Storage Group

WLCG Network Throughput WG

WLCG Network Throughput WG

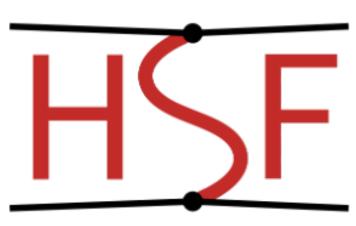
WLCG Security Working groups

- WLCG Traceability Working Group
- WLCG Authorisation Working Group
- WLCG Federated Operations Security Working Group
 Interview of the security Working Group

WLCG Containers Working Group

WLCG Containers Working Group

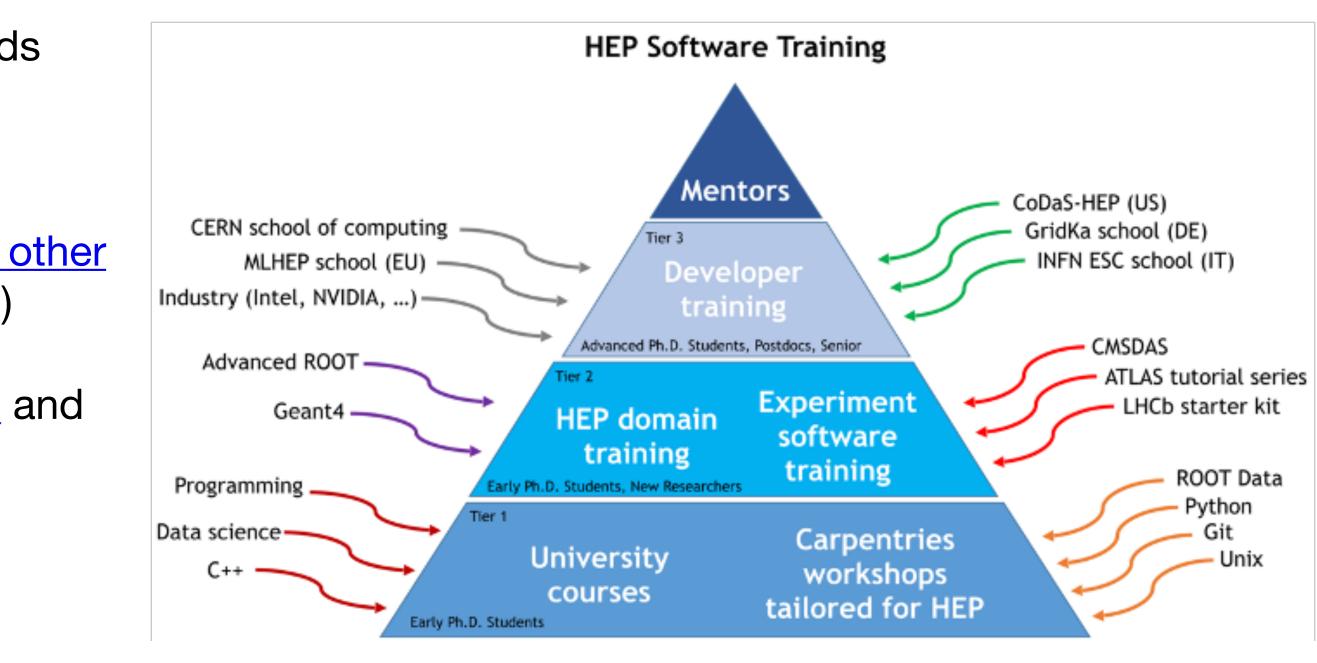
Kubernetes WG


Kubernetes[™]

WG for Transition to Tokens and Globus Retirement

• WG for Transition to Tokens and Globus Retirement

After the CWP many of the groups that collaborated on writing the paper



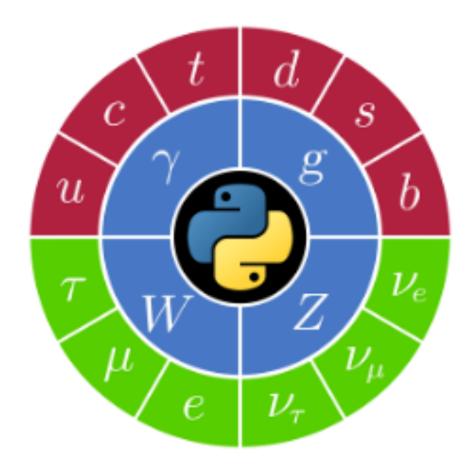
HEP Software Foundation

- Data Analysis
- Detector Simulation
- Frameworks
- Physics Generators
- PyHEP Python in HEP
- Reconstruction and Software Triggers
- Software Developer Tools and Packaging
- Training
- Differentiable Computing
- Season of Docs
- Google Summer of Code
- intelligent Data Delivery Service
- Licensing
- Quantum Computing
- Reviews
- Visualisation
- Analysis Facilities

Example: Training

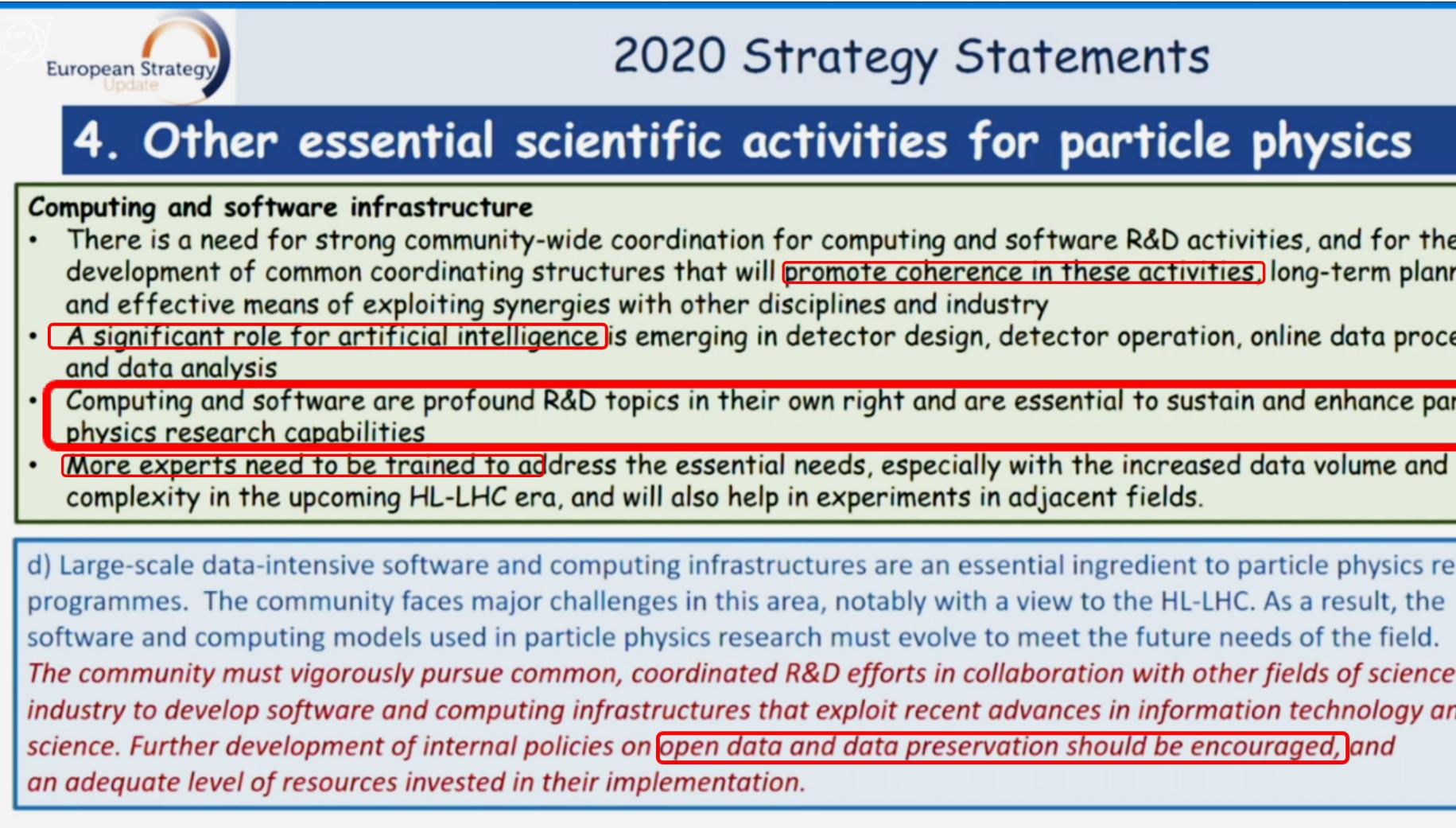
- Many new skills are needed for today's software developers and users
- Base of the pyramid has relatively common demands
 - Common software components help in training
- HSF Training Group runs Software Carpentries and other lacksquaretutorials (co-organised between the HSF IRIS-HEP)
- Highly successful <u>C++ training courses</u> (from <u>SIDIS</u> and HSF)
 - Inspires continued <u>curriculum development</u> and \bullet sharing material
- Assembling a <u>complete curriculum</u> for training in HEP, using Carpentries templates
- Paper published on <u>HEP Software Training Challenges</u>

Ex: Event Generators


- Base of all simulation
 - LHC Run-1 leading order generators used and contributed little to overall CPU budgets
- Increasing importance for LHC precision measurements
 - ATLAS and CMS now use higher order generators like MG5_aMC and Sherpa
 - Technical and physics challenges arise particularly from negative event weights
- HSF Working Group formed after the 2018 <u>computing for event generators workshop</u>
 - Active in a number of areas such as understanding costs and the physics impact of event generation choices
 - Raising the issue of generators more widely (<u>LHCC talk</u>, <u>CSBS paper</u>)
 - Involved in porting efforts for running event generation on GPUs

Implementation (e⁺e⁻→μ⁺μ⁻)	MEs / second Double
1-core MadEvent Fortran scalar	1.50E6 (x1.15)
1-core Standalone C++ scalar	1.31E6 (x1.00)
1-core Standalone C++ 128-bit SSE4.2 (x2 doubles, x4 floats)	2.52E6 (x1.9)
1-core Standalone C++ 256-bit AVX2 (x4 doubles, x8 floats)	4.58E6 (x3.5)
1-core Standalone C++ "256-bit" AVX512 (x4 doubles, x8 floats)	4.91E6 (x3.7)
1-core Standalone C++ 512-bit AVX512 (x8 doubles, x16 floats)	3.74E6 (x2.9)
Standalone CUDA NVidia V100S-PCIE-32GB (2560 FP64 cores*)	7.25E8 <mark>(x550)</mark>

Ex: PyHEP Workshops


- More that 1300 people registered, demonstrating huge interest in this area driven by
 - Data science and machine learning toolkits
 - Integration with particle physics tools (Coffea, pyhf, PyROOT, Scikit-HEP, SWAN, zfit)
- Trends and hot topics included automatic differentiation
 - An <u>HSF activity area</u> started just before the summer 2021
- Many talks and tutorials done as notebooks
 - Participants could follow live or use them as offline resources
 - Integrated into Binder \bullet
- \bullet

Started in 2018 at Sofia CHEP and grew into two very successful virtual workshops in <u>2020</u> and <u>2021</u>

Everything uploaded to the HSF's <u>YouTube channel</u> - supported by Python Software Foundation

Recommendations

19/06/2020

2020 Strategy Statements

There is a need for strong community-wide coordination for computing and software R&D activities, and for the development of common coordinating structures that will promote coherence in these activities, long-term planning

• A significant role for artificial intelligence is emerging in detector design, detector operation, online data processing

Computing and software are profound R&D topics in their own right and are essential to sustain and enhance particle

d) Large-scale data-intensive software and computing infrastructures are an essential ingredient to particle physics research The community must vigorously pursue common, coordinated R&D efforts in collaboration with other fields of science and industry to develop software and computing infrastructures that exploit recent advances in information technology and data

Summary

- Particle physics is an inherently international effort, with an excellent tradition of cooperation in many different S&C domains
- - More are needed!
 - Operations programs for S&C can provide sustainability but can also lead to duplication AND small experiments may not have them!
 - Event Generators) See recommendation 1 from CompF.
- HSF and WLCG umbrella organizations offer an excellent place to present work community workshops & other activities

• There has been many funding opportunities for cross experiment R&D in the S&C domain.

• Usually cross experiment sustainability and enhancement is not supported (Geant,

discussing successes (and disappointments!), to help avoid duplication, and to lead