New bounds on axion-like particles from MicroBooNe

Salvador Urrea (savador:Ureeeeificuves)

Based on arXiv:2202.03447 (Accepted by JHEP)

In collaboration with Pilar Coloma, Pilar Hernández

Snowmass 2022 workshop July 23, 2022

Gen-T
CIDEGENT/2018/019
GENERALITAT VALENCIANA

ALPs (axion-like particles)

 pseudo-Nambu-Goldstone bosonsIspontaneous global symmetry breaking

Ubiquitous in SM extensions
¿Why this name?
QCD axion, most motivated example

Outline

Goal?

Production $K \rightarrow \pi a$

Detection

$$
a \rightarrow \ell^{+} \ell^{-} \quad a \rightarrow \gamma \gamma
$$

Results

What's next?

Effective Lagrangian

$$
\begin{gathered}
\delta \mathcal{L}_{\mathrm{EW}}=c_{\phi} \mathcal{O}_{\phi}+c_{B} \mathcal{O}_{B}+c_{W} \mathcal{O}_{W} \\
\Lambda \propto f_{a}=1 \mathrm{TeV}
\end{gathered}
$$

where c_{i} stand for the Wilson coefficients of each operator:

$$
\begin{aligned}
\mathcal{O}_{\phi} & =i \frac{\partial^{\mu} a}{f_{a}} \phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi{ }^{\text {Hypercharge rotation }} \frac{\partial_{\mu} a(x)}{f_{a}} \sum_{F} \bar{\Psi}_{F} \gamma^{\mu} \Psi_{F} \\
\mathcal{O}_{B} & =-\frac{a}{f_{a}} B_{\mu \nu} \widetilde{B}_{\mu \nu} \\
\mathcal{O}_{W} & =-\frac{a}{f_{a}} W_{\mu \nu}^{a} \widetilde{W}_{\mu \nu}^{a}
\end{aligned}
$$

ALPs Production

Energy

gluons and quarks

RG equations

Light mesons
Low energy QCD
$\pi^{+}, \pi^{-}, \pi^{0}, K^{+} \ldots-1.6 \mathrm{GeV}$ Chiral Lagrangian
$K^{+} \rightarrow \pi^{+} a$
M. Bauer, M. Neubert, et al, arXiv:2012.12272
M. Bauer, M. Neubert, et al, arXiv:2102.13112

Computation
$\Gamma\left(K^{+} \rightarrow \pi^{+} a\right)=\frac{m_{K}^{3}\left|\left[k_{Q}\left(\mu_{w}\right)\right]_{s d}\right|^{2}}{64 \pi} \lambda_{\pi a}^{1 / 2}\left(1-\frac{m_{\pi}^{2}}{m_{K}^{2}}\right)^{2} \propto$ coupling 2
$\left.\frac{\left[k_{Q}\left(\mu_{w}\right)\right]_{d s}}{V_{t d}^{*} V_{t s}}\right|_{\Lambda=1 \mathrm{TeV}} \simeq \frac{-9.7 \times 10^{-3} c_{W}(\Lambda)+8.2 \times 10^{-3} c_{\phi}(\Lambda)}{\text { Leading terms }}-3.5 \times 10^{-5} c_{B}(\Lambda)$

Detection: ALPs decays

$$
\begin{gathered}
m_{a}>2 m_{\ell} \\
\Gamma\left(a \rightarrow \ell^{+} \ell^{-}\right)=\left|c_{\ell \ell}\right|^{2} \frac{m_{a} m_{\ell}^{2}}{8 \pi f_{a}^{2}} \sqrt{1-\frac{4 m_{\ell}^{2}}{m_{a}^{2}}} \propto m_{\ell}^{2} \\
c_{\ell \ell}=c_{\phi}+\operatorname{small} \text { corrections }\left(c_{W}, c_{B}\right)
\end{gathered}
$$

$$
\begin{gathered}
\Gamma(a \rightarrow \gamma \gamma)=\left|c_{\gamma \gamma}\right|^{2} \frac{m_{a}^{3}}{4 \pi f_{a}^{2}} \\
c_{\gamma \gamma}=c_{W} s_{w}^{2}+c_{B} c_{w}^{2}+\text { small corrections }\left(c_{W}, c_{\phi}\right)
\end{gathered}
$$

Detection: ALPs decays

c_{ϕ} dominated
$m_{a}<2 m_{\mu} \quad \mathrm{BR}\left(\mathrm{a} \rightarrow e^{+} e^{-}\right) \approx 1 \quad \mathrm{BR}(\mathrm{a} \rightarrow \gamma \gamma) \approx 1$
$m_{a}>2 m_{\mu} \quad \mathrm{BR}\left(\mathrm{a} \rightarrow \mu^{+} \mu^{-}\right) \approx 1 \quad \mathrm{BR}(\mathrm{a} \rightarrow \gamma \gamma) \approx 1$
c_{W} dominated

Experimental set-up

Decay at rest Hadron absorber

Number of events

$$
\begin{aligned}
N_{\text {events }}= & N_{K} \times \mathrm{BR}(K \rightarrow \pi a) \times \mathrm{BR}(a \rightarrow X X) \times \\
& \times \text { Efficiency } \times \text { Detector Acceptance } \times P_{\text {decay }}
\end{aligned}
$$

$L_{a}=$ Lifetime of the ALPs
$\Delta \ell_{\text {det }}=$ Detector length
$\ell_{\text {det }}=100 \mathrm{~m}$
Large couplings $e^{-\frac{\ell_{\mathrm{det}}}{L_{a}}}$
$P_{\text {decay }}=e^{-\frac{\ell_{\mathrm{det}}}{L_{a}}} \times\left[1-e^{-\frac{\Delta \ell_{\mathrm{det}}}{L_{a}}}\right]$
Small couplings $1-e^{-\frac{\Delta \ell_{\text {det }}}{L_{a}}} \propto(\text { coupling })^{2}$

Main results

Bound using MicroBoone data

[^0]P. Coloma, P. Hernández, S. Urrea. arXiv:2202.03447

Future prospects

P. Coloma, P. Hernández, S. Urrea. arXiv:2202.03447

Higgs portal $\mu^{-} \mu^{+}$

More results

$\mathrm{c}_{W} \operatorname{vs} c_{B} \quad m_{a}=200 \mathrm{MeV}$

Detection

 $c_{\ell \ell}=c_{\phi}+$ small corrections $\left(c_{W}, c_{B}\right)$
$\mathrm{c}_{\phi} \operatorname{vs} c_{B} \quad m_{a}=200 \mathrm{MeV}$

What's next?

- We encourage the MicroBoone collaboration to search for ALPs as well. Particularly the diphoton channel
-Probe this Physics in future experiments like DUNE(We are working on it! Soon in Arxive!)

Thank you

Back-up

Production

$$
\left.\frac{\left[k_{Q}\left(\mu_{w}\right)\right]_{d s}}{V_{t d}^{*} V_{t s}}\right|_{\Lambda=1 \mathrm{TeV}} \simeq \underline{-9.7 \times 10^{-3} c_{W}(\Lambda)+8.2 \times 10^{-3} c_{\phi}(\Lambda)}-3.5 \times 10^{-5} c_{B}(\Lambda)
$$

Detection

$\begin{aligned} c_{\gamma \gamma} & =c_{W} s_{w}^{2}+c_{B} c_{w}^{2}+c_{\phi} \frac{\alpha}{4 \pi} \frac{m_{a}^{2}}{m_{\pi}^{2}-m_{a}^{2}}+\operatorname{small} \text { corrections }\left(c_{W}, c_{\phi}\right) \\ c_{\ell \ell} & =c_{\phi}+\text { small corrections }\left(c_{W}, c_{B}\right)\end{aligned}$

$$
c_{W} \sim m_{a}^{2} /\left(m_{a}^{2}-m_{\pi}^{2}\right) c_{\phi} \alpha /\left(4 s_{w}^{2} \pi\right)
$$

Hypercharge rotation

$$
i c_{\phi} \frac{\partial^{\mu} a}{f_{a}} \phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi
$$

$$
\begin{aligned}
\phi & \rightarrow e^{i c_{\phi} \frac{a}{f a}} \phi \\
\Psi_{F} & \rightarrow e^{2 i Y_{F} c_{\phi} \frac{a}{f a}} \Psi_{F}
\end{aligned}
$$

$$
\frac{\partial_{\mu} a(x)}{f_{a}}\left(\sum_{q} \bar{q}_{R} k_{q} \gamma^{\mu} q_{R}+\sum_{Q} \bar{Q}_{L} k_{Q} \gamma^{\mu} Q_{L}\right)
$$

$$
k_{u}(\Lambda)=-\frac{4}{3} c_{\phi}(\Lambda), \quad k_{d}(\Lambda)=\frac{2}{3} c_{\phi}(\Lambda), \quad k_{Q}(\Lambda)=-\frac{1}{3} c_{\phi}(\Lambda)
$$

$$
k_{e}(\Lambda)=2 c_{\phi}(\Lambda), \quad k_{L}(\Lambda)=c_{\phi}(\Lambda)
$$

Loop functions

$$
\begin{gathered}
B_{0}=\left(\sum_{f=c, t} N_{c} Q_{f}^{2} B_{1}\left(\tau_{f}\right)-\sum_{f=b, \ell_{\alpha}^{-}} N_{c} Q_{f}^{2} B_{1}\left(\tau_{f}\right)\right) \\
B_{1}(\tau)=1-\tau f^{2}(\tau) \\
B_{2}(\tau)=1-(\tau-1) f^{2}(\tau) \\
f(\tau)= \begin{cases}\arcsin \frac{1}{\sqrt{\tau}} ; & \tau \geq 1 \\
\frac{\pi}{2}+\frac{i}{2} \ln \frac{1+\sqrt{1-\tau}}{1-\sqrt{1-\tau}} ; & \tau<1\end{cases} \\
\tau_{f} \equiv 4 m_{f}^{2} / m_{a}^{2}, Q_{f}
\end{gathered}
$$

Full expresions

$$
c_{\gamma \gamma}=c_{W}\left[s_{w}^{2}+\frac{2 \alpha}{\pi} B_{2}\left(\tau_{W}\right)\right]+c_{B} c_{w}^{2}-c_{\phi} \frac{\alpha}{4 \pi}\left(B_{0}-\frac{m_{a}^{2}}{m_{\pi}^{2}-m_{a}^{2}}\right)
$$

$$
c_{\ell \ell}=c_{\phi}+\frac{3 \alpha}{4 \pi}\left(\frac{3 c_{W}}{s_{w}^{2}}+\frac{5 c_{B}}{c_{w}^{2}}\right) \log \frac{f_{a}}{m_{W}}+\frac{6 \alpha}{\pi}\left(c_{B} c_{w}^{2}+c_{W} s_{w}^{2}\right) \log \frac{m_{W}}{m_{\ell}}
$$

[^0]: MicroBooNE Bound \square
 CHARM
 NA62
 Excluded
 E787-E949
 LHCb

