

A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE

Tanaz Angelina Mohayai, for the DUNE Collaboration Snowmass Community Summer Study Workshop DUNE and Neutrino Interactions Session July 23, 2022

Fermilab

Why a Gaseous-argon Based ND

• DUNE's gaseous-argon based ND, ND-GAr (Phase II, ND Upgrade) measures ν-Ar interactions with low threshold and high resolution to enable 5σ sensitivity to CP violation and provides the basis for a comprehensive and a strong BSM program in DUNE

ND-GAr in DUNE

- DUNE's highly capable ND complex includes ND-LAr (see Z. Vallari's talk <u>here</u>), ND-GAr, SAND (see Z. Ghorbanimoghaddam's talk <u>here</u>), & DUNE-PRISM:
 - ★ Precisely measure the v-energy spectrum and v-flavor composition of the 1.2 MW (upgradable to 2.4 MW) high-intensity, wide-band v-beam
 - ★ Precisely measure v-Argon cross-sections (see K. Mahn's talk <u>here</u>)

ND-GAr Concept

ALICE engineering drawing

HPgT

- A magnetized High Pressure Gas Argon TPC (**HPgTPC**) surrounded by **ECAL** and **µ-tagger**:
 - ★ Reference design repurposes ALICE multiwire chambers
 - ★ Other designs under consideration, e.g. GEMs
- Main design capabilities:
 Low threshold

 - ★ Excellent PID, tracking efficiency, momentum resolution

T. A. Mohayai

- \star 4 π coverage
- ★ Minimal secondary interactions

0.5 7

Magnet

ECAL

Magnet Yoke,

instrumented with

µ-tagger

The Need for the Low Threshold ND-GAr

- Nucleus is a complicated environment (e.g. specially problematic when using heavy nuclei as target):
 - *Nuclear effects, e.g. final state interactions not yet fully understood
 - ★Introduces uncertainties in neutrino energy reconstruction and neutrino event rate estimation which need to be constrained

Examples from Existing Experiments

• Cross sections/neutrino interaction model uncertainties from existing experiments (all using high threshold detectors) are too large for DUNE • We need to do better – low threshold ND-GAr can help

Γ_{2K} https://doi.org/10.1038/§41586-020-21//-0				
Type of Uncertainty	$\nu_c/\bar{\nu}_e$ Candidate Relative Uncertainty (%)			
Super-K Detector Model	1.5			
Pion Final State Interaction and Rescattering Model	1.6			
Neutrino Production and Interaction Model Constrained by ND280 Data	2.7			
Electron Neutrino and Antineutrino Interaction Model	3.0			
Nucleon Removal Energy in Interaction Model	3.7			
Modeling of Neutral Current Interactions with Single γ Production	1.5			
Modeling of Other Neutral Current Interactions	0.2			
Total Systematic Uncertainty	6.0			

10 10201 11506 000 0177 0

https://doi.org/10.1103/PhysRevLett.123.151803 NOvA

	ν_e Signal	ν_e Bkg.	$\bar{\nu}_e$ Signal	$\bar{\nu}_e$ Bkg.
Source	(%)	(%)	(%)	(%)
Cross-sections	+4.7/-5.8	+3.6/-3.4	+3.2/-4.2	+3.0/-2.9
Detector model	+3.7/-3.9	+1.3/-0.8	+0.6/-0.6	+3.7/-2.6
ND/FD diffs.	+3.4/-3.4	+2.6/-2.9	+4.3/-4.3	+2.8/-2.8
Calibration	+2.1/-3.2	+3.5/-3.9	+1.5/-1.7	+2.9/-0.5
Others	+1.6/-1.6	+1.5/-1.5	+1.4/-1.2	+1.0/-1.0
Total	+7.4/-8.5	+5.6/-6.2	+5.8/-6.4	+6.3/-4.9

The Need for the Low Threshold ND-GAr

• Lower threshold of **ND-GAr's HPgTPC** than **ND-LAr**:

*Leads to high sensitivity to low energy protons or pions:

★Reveals discrepancies between neutrino event generators, getting us closer to choosing more accurate neutrino-nucleus interaction models and constraining uncertainties in neutrino oscillation measurements

T. A. Mohayai

A Wealth of v-Argon Interaction Data

Using high-pressure gas-argon as detecting medium allows for an independent sample of v-interactions on argon and constrains the cross-section systematic uncertainties to the level needed by the oscillation analysis
 ★ e.g. high statistics sample of exclusive neutrino interactions without a pion

or with some number of pions in final state

1 ton fiducial mass for 1						
year of v-mode running						
with a 1,2MW Beam Power						
Event class	Number of events per ton-year					
$\nu_{\mu} \operatorname{CC}$	$1.6 imes 10^6$					
$\overline{ u}_{\mu}~{ m CC}$	$7.1 imes 10^4$					
$\nu_e + \overline{\nu}_e \ \mathrm{CC}$	$2.9 imes10^4$					
NC total	$5.5 imes 10^5$					
$ u_{\mu}~{ m CC}0\pi$	$5.9 imes10^5$					
$ u_{\mu}~{ m CC}1\pi^{\pm}$	$4.1 imes 10^5$					
$ u_{\mu} \operatorname{CC1} \pi^0$	$1.6 imes 10^5$					
$ u_{\mu}~{ m CC}2\pi$	$2.1 imes 10^5$					
$ u_{\mu} \operatorname{CC3\pi}$	$9.2 imes 10^4$					
$ u_{\mu}$ CC other	$1.8 imes 10^5$					

A detailed view of the v-interaction vertex

Superb PID for v-Ar Interaction Measurements

• dE/dx resolution: 0.8 keV/cm

• Excellent PID combined with low threshold feature allows ND-GAr to help with correctly identifying the **different final state topologies e.g. pion multiplicities** very well

BSM Reach

- In addition to precise measurements of neutrino-argon cross sections, ND-GAr also enables a rich BSM physics program in DUNE, e.g. rare events such as:
 - ★ Neutrino tridents
 - ★ Heavy neutral leptons, HNL
 - ★ Anomalous Tau neutrinos
 - ★ Light dark matter

DEEP UNDERGROUND

EUTRINO EXPERIMENT

★ Heavy axions

M. Breitbach, L. Buonocore, C. Frugiuele, J. Kopp and L. Mittnacht, Searching for physics beyond the standard model in an off-axis dune near detector, 2102.03383

T. A. Mohayai

10

Projected Performance

A full end-to-end simulation and reconstruction already exists (GArSoft)!
 Momentum resolution and tracking efficiency from a sample of muon neutrino events: 2.7% & >90% for tracks with >40 MeV/c momenta, respectively
 Proton tracking efficiency from a sample of isotropic protons at the vertex: >80% for proton tracks with >10 MeV energies

11

Projected Performance

ECAL can efficiently tag/reject π⁰s, γs (background to electron-neutrinos), neutrons – without ECAL, sensitivity to neutral particles is almost non-existent
 Can also tag/reject outside of fiducial volume backgrounds using timing

DUNE Collaboration, A. Abed Abud et al. Instruments 5 no. 4, (2021) 31, arXiv:2103.13910 [physics.ins-det].

T. A. Mohayai

DEEP UNDERGROUND

NEUTRINO EXPERIMENT

• Bulk of the charge readout R&D focused on optimizing the ALICE inner (IROC) and outer (OROC) multiwire chambers, CROCs need to be built

T. A. Mohayai

• But there are opportunities for exploring alternate designs, e.g. Gas-electron multipliers, GEMs (T. Mohayai FNAL New Initiatives R&D award)

13

🗲 Fermilab

What is involved in the charge readout optimization studies:
 Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously operated at 1 atm)
 Fermilab Test Stand, housing an IROC

Anode Voltage (V)

Royal Holloway Test Stand, housing an OROC, moving to Fermilab Test Beam

Electronics under development by Pittsburg, Fermilab, & Imperial

- What is involved in the charge readout optimization studies:
 - ★ Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously operated at 1 atm)
 - ★ Defining a base gas mixture reference is argon-based gas with 10% CH₄ admixture (97% of interactions on Ar) but can be optimized to:
 - Control pile up (drift velocity) and improve spatial resolution (diffusion)

P. Hamacher-Baumann et al., Phys. Rev. D 102, 033005 (2020)

T. A. Mohayai

15

- What is involved in the charge readout optimization studies:
 - ★ Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously operated at 1 atm)
 - ★ Defining a base gas mixture reference is argon-based gas with 10% CH₄ admixture (97% of interactions on Ar) but can be optimized to:
 - Control pile up (drift velocity) and improve spatial resolution (diffusion)
 - Maximize gas gain

EUTRINO EXPERIMENT

NO EXPERIMENT

- What is involved in the charge readout optimization studies:
 - ★ Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously operated at 1 atm)
 - ★ Defining a base gas mixture reference is argon-based gas with 10% CH₄ admixture (97% of interactions on Ar) but can be optimized to:
 - Control pile up (drift velocity) and improve spatial resolution (diffusion)
 - Maximize gas gain, while minimizing gas electrical breakdown

Norman, L. *et al.* Dielectric strength of noble and quenched gases for high pressure time projection chambers. *Eur. Phys. J. C* 82, 52 (2022)

Projected Breakdown Voltage at 10 bar, $1 \text{ cm} (kV)$							
	Ar	Xe	Ar-CF ₄	Ar-CH ₄	Ar-CO ₂	$\rm CO_2$	CF_4
Townsend	52.6	75.4	61.7	63.9	68.6	129.5	179.7
Meek	69.9	98.9	72.1	80.3	87.3	171.2	212.2

T. A. Mohayai

Fermilab

- What is involved in the charge readout optimization studies:
 - ★ Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously operated at 1 atm)
 - ★ Defining a base gas mixture reference is argon-based gas with 10% CH₄ admixture (97% of interactions on Ar) but can be optimized to:
 - Control pile up (drift velocity) and improve spatial resolution (diffusion)
 - ► Maximize gas gain, while minimizing gas electrical breakdown
 - Ability to operate with a hydrogen-rich gas mixture to probe more fundamental neutrinohydrogen interactions

P. Hamacher-Baumann et al., Phys. Rev. D 102, 033005 (2020)

T. A. Mohayai

- What is involved in the charge readout optimization studies:
 - ★ Testing the chambers @ various pressures up to 10 atm (e.g. ALICE chambers previously operated at 1 atm)
 - ★ Defining a base gas mixture reference is argon-based gas with 10% CH₄ admixture (97% of interactions on Ar) but can be optimized to:
 - Control pile up (drift velocity) and improve spatial resolution (diffusion)
 - Maximize gas gain, while minimizing gas electrical breakdown
 - Ability to operate with a hydrogen-rich gas mixture to probe more fundamental neutrinohydrogen interactions

6

5

classical doping

 $-2\% CH_4 (V_a = 3600V)$

 $1\% CF_4 (V_a = 3300V)$

D. González-Díaz, IGFAE

avalanche

scintillation

- Optical readout & light collection:
 - ★ Choose an admixture/dopant that will not quench the scintillation signal
 - ★ Benefits: t₀ time-tag, BSM searches, improved track matching with ND-LAr, neutral particle reconstruction via time-of-flight, NC interaction

Summary

- The DUNE ND-GAr unique design includes components that enable:
- DUNE to reach 5 sensitivity to CP violation
- A close-up view of v-Ar interactions to more precisely identify and resolve the discrepancies in neutrino-nucleus interaction models
- * A comprehensive search for rare decays and symmetries beyond the standard model
 - A wide range of detector R&D efforts are underway to build a highly capable ND-GAr:
 - Besides R&D on the acquired ALICE multiwire readout chambers, we are exploring various new detector R&D areas, including GEM development & optical readout

DUNE DEEP UNDERGROU NEUTRINO EXPERI

DUNE Collaboration, A. A. Abud et al. in 2022 Snowmass Summer Study. 3, 2022. arXiv:2203.06100

Additional Slides

Fermilab

21

Projected Performance

- High-momentum muons and pions will range out of ECAL
- A muon tagger can achieve a purity of 100% above 1 GeV/c

Low Threshold ND-GAr

Lower threshold of ND-GAr's HPgTPC than ND-LAr:
 Leads to a high sensitivity to low energy protons or pions:

Gas Multiplication Gain Concept

T. A. Mohayai