

Zoya Vallari

On behalf of the DUNE Collaboration

The classical LArTPC

- ◆ The Liquid Argon TPCs are fully-active tracking calorimeters.
- Neutrino interaction in LAr produces ionization and scintillation light
- ◆ The ionization charge drifts in a uniform electric field to finely segmented wire planes.
- ◆ The scintillation light is collected using PMTs.

Why LArTPC?

- Excellent spatial and calorimetric resolution provides exceptional capabilities for precision study of neutrinos.
- Multiple wire orientations give independent views of the same event.
- ◆ Scintillation light provides valuable timing information.

LArTPCs provide 3D reconstruction!

ProtoDUNE SP LArTPC Events

Modular LArTPC

- However, classical TPCs infer 3D reconstruction by combining 2D views.
- Ambiguities in projective wire readout aggravate in high multiplicity environment.

Why Modular LArTPC for DUNE?

Simulation of 1.2 MW LBNF beam spill at DUNE ND

Geant4 visible energy deposits - color indicates independent visible interactions.

The DUNE Experiment

> DUNE will use the most intense accelerator neutrinos from the LBNF beam and detect them at SURF 1300 kms away. Near Detector (ND) at Fermilab will provide crucial in-situ constraints for measurements at the FD.

DUNE Physics goals*: Discovery

DUNE Oscillation Overview @ Snowmass: C. Wilkinson July19th

Mass Ordering: Normal or Inverted?

 δ_{CP} : Do neutrinos violate CP?

*other cool searches for supernova, DSNB, BSM physics and sterile searches not included here!

DUNE Oscillation Overview @ Snowmass: C. Wilkinson July19th

*other cool searches for supernova, DSNB, BSM physics and sterile searches not included here!

The DUNE ND Overview

DUNE Oscillation Overview @ Snowmass: D. Cherdack July19th

System for moving the LArTPC + muon tracker up to 30m transverse to the beam direction to enable scans of beam at multiple off-axis positions

The Near Detector

Objective: Predict the observed neutrino spectrum at the FD

Requirements

Measurements transferable to the FD

Constrain the cross-section model

Measure the neutrino flux

Obtain measurement with different fluxes

Monitor time variations of the neutrino beam

Operate in high-rate environment

Never go on a long baseline adventure without a near detector — Anonymous.

arXiv 2103:13910 DUNE ND CDR

ND-LAr Report Card

Objective: Predict the observed neutrino spectrum at the FD

Requirements

Measurements transferable to the FD

Constrain the cross-section model

Measure the neutrino flux

Obtain measurement with different fluxes

Monitor time variations of the neutrino beam

Operate in high-rate environment

arXiv 2103:13910 DUNE ND CDR

ND-LAr Design

Key Features:

- Pixelated charge readout
- High photodetector coverage with a large are dielectric photon detection system
- Highly resistive foil for electric field shaping
- Modular design provides optical segmentation

LArPix pixelated anode

Carbon-loaded Kapton field cage sheet

Cathode

LCM tile

ArCLight tile

ND-LAr Design:

- Active size: 5m deep, 7m wide and 3m tall
- 5 x 7 hermetic TPC modules 1m x 1m x 3m
- Short drift (50 cm)
- Minimal inactive material with density similar to LAr

Pixelated Charge Readout

- → Provides unambiguous 3D tracking of charged particles crossing a LArTPC.
- ◆ Low-power, low-noise integrating amplifier with self-triggered digitization and readout
- Charge stays on pixel until digitization and/or reset
- Always active continuous self-triggering

LArTPC Pixelated Readout @ Snowmass: B. Russell July 20th

<u>Dan Dwyer et al. JINST</u> 13 (2018) P10007

LArPix Pixel tile

- 32 cm x 32 cm large-format mixed signal PCB
- 100 LArPix-v2a ASICs/tile
- 4900 pixel pads with 4.4 mm pixel pitch

LArPix Pixel tile with pixel pads(front) and ASICS(back)

Light Readout System

- The TPC needs a highperformance light detection system with:
 - High coverage with a dynamic range
 - Fast readout to provide precise spatial resolution
 - Capability to operate in high-rate environment

Timeline of Technical Demonstrations

- ◆ 4 individual fully integrated, ton-scale LAr Modules are being tested at Bern at cryogenic temperatures.
- ◆ Collected data from O(~100M) cosmic ray induced events during Module-0 and Module-1 runs.

Through-going muon track

Shower event caused by very highenergy mons

- With high statistics data, Module-0 is already producing competitive measurements.
 - Simultaneous fit of charge and light yield gives measurements that are consistent with ICARUS and ArgoNeut.
- ◆ Publication on Module-0 data analysis is in preparation: "Performance of a modular ton-scale pixelreadout liquid argon Time Projection Chamber".

2x2 Demonstrator: Fermilab

- ◆ All 4 LArTPC modules will be assembled as a prototype modular detector with repurposed scintillator planes from Minerva providing additional tracking.
- ◆ A run in the NuMI beam would provide the first neutrino beam run with comparable intensity to the LBNF beam.

2x2 Demonstrator: Fermilab

+ Goals:

- Integration and installation of modules in a cohesive detector.
- Operations protocol for underground operations.
- Neutrino signal identifications and reconstruction.
- Understanding detector performance with pile-up in a neutrino beam.

Status:

- Module-0 and Module-1 are undergoing rigorous acceptance and checkout tests at Fermilab.
- Module-2 and Module-3 will be assembled and shipped from Bern over the next couple of months.
- + On-schedule for a run in 2022 2023.

Simulation of a neutrino event producing muon and EM shower in 2x2 demonstrator

Summary

- ◆ DUNE is the next generation precision neutrino experiment with discovery potential for CP violation in leptons and neutrino mass ordering.
- ◆ ND will provide critical constraints to neutrino flux and cross-sections at the FD.
- ◆ A Modular-LArTPC is needed to tolerate the extremely high event rate at the DUNE ND.
- Novel technologies designed for DUNE ND-LAr have been demonstrated to work successfully in a single module.
- ProtoDUNE-ND (2x2 demonstrator) is currently being assembled and a run in NuMI neutrino beam is coming up soon!
- Provides exciting new physics opportunities to the community both short and longterm!

Thank You!

Image by R. Soleti (LBNL) Total induced current 266 268 270 272 Time [μs]

