DEEP UNDERGROUND NEUTRINO EXPERIMENT

Sensitivity to Heavy Neutral Leptons With **SAND detector at DUNE-ND**

Zahra Ghorbani Moghaddam

University of Perugia and INFN Genova "On behalf of the DUNE Collaboration"

July 23th, 2022

Community Summer Study SN & WMASS July 17-26 2022, Seattle

BEYOND STANDARD MODEL PHYSICS

SNOWMASS 2022

July 23th, 2022

- Digitizing

July 23th, 2022

• Existing Reco didn't work for this particular event: Motivation for implementing a customized Kalman Filter

July 23th, 2022

customized Kalman Filter

SNOWMASS 2022

*****SAND (System for on-Axis Neutrino Detection)

July 23th, 2022

SNOWMASS 2022

Reconstruction, Kalman Filter

- taken at different times, taking into account gaussian fluctuations
- measurement.

*** Toy MC**

July 23th, 2022

Kalman Filter, Toy MC

Zahra Gh.Moghaddam

SNOWMASS 2022

Smoothing

Kalman Filter, from Toy MC to **Geant4** MC

***** Preparation for Geant4 MC

- Mad-Dump: Genie-like output
- EdepSim (*nd_hall_kloe_sttonly.gdml*): Edep-Sim output
- Digitization (200 µm smearing): wire position added (to meet with Kalman Filter discrete process that goes in steps, e.g. zero uncertainty on z coordinate of the plane)
- X,Y hits are combined into an extrapolated measurement at the z of the wire of the upstream plane of the module

*** Kalman Filter Geant4 MC**

- HNL sample 1 GeV mass , $D_s \rightarrow N_2 \mu$, $\mathbf{U}_{\mu} : \mathbf{U}_{\mathbf{e}} : \mathbf{U}_{\tau} \sim \mathbf{1} : \mathbf{16} : \mathbf{3} \cdot \mathbf{8}$
- Forward/Backward

Customized Kalman Filter Assumptions

- Straw modules: XXYY or XXYYXX (present in this geometry)
- Uniform **B** field, 0.6 T
- Processing hits:

Separate measurement for X and Y are recombined to (X, Y) referring to the Z of the first straw layer of each module

July 23th, 2022

SNOWMASS 2022

Backward

B (• δz -37.7180-18.6600 -5.0000--5.0000--14.0580-Tunable Radiator: target 105 foils slab 3% of mass XX straws YY straws Replaceable by nuclear target: C, Ca, Fe, Pb, Ar, etc. Total thickness $\sim 0.015 X_0$

July 23th, 2022

SNOWMASS 2022

SNOWMASS 2022

July 23th, 2022

SNOWMASS 2022

July 23th, 2022

	_
]
.74	I
.49	I
.25	I
.26	I

MC Truth Matching

SNOWMASS 2022

Angle between μ and π , Reco vs True

160

120

100

80

60

40

20

***** Features

- Backward Kalman direction implemented, in this case backward is more efficient: the initial hit is found easier and more precise (MCS not messing with 140 the hits much)
- Multiple scattering has been added (changing the resolution by 0.1%)
- For better precision, external helical fit has been used (hits are coming from Kalman Filter, the used fit is the external one)

***** Items to have an eye on:

- Invariant Mass resolution
- Momentum resolution
- Kalman Filter parameters (Pull plots)
- Goodness of the fit (χ^2)

*** Procedure:**

- Kalman Filter \bullet
 - Forward/Backward Kalman and smoothing.
 - External helical fit.
 - Reco tracks:
 - A. Choosing either forward or backward as Reco tracks.
 - B. Matching the forward/backward Reco tracks ($\geq 50\%$ shared
 - hits), choosing the right combo for the final Reco track collection
- Matching the Reco and the True
- Momentum resolution, invariant mass resolution, Pull plots

July 23th, 2022

SNOWMASS 2022

500

400

300

200

100

140

120

100

20

***** Features

- Backward Kalman direction implemented, in this case backward is more efficient: the initial hit is found easier and more precise (MCS not messing with the hits much)
- Multiple scattering has been added (changing the resolution by 0.1%)
- For better precision, external helical fit has been used (hits are coming from Kalman Filter, the used fit is the external one)

***** Items to have an eye on:

- Invariant Mass resolution
- Momentum resolution
- Kalman Filter parameters (Pull plots)
- Goodness of the fit (χ^2)

*** Procedure:**

Kalman Filter

July 23th, 2022

- Forward/Backward Kalman and smoothing.
 - External helical fit.
 - Reco tracks:
 - A. Choosing either forward or backward as Reco tracks.
 - B. Matching the forward/backward Reco tracks (≥ 50 % shared
 - hits), choosing the right combo for the final Reco track collection
- Matching the Reco and the True
- Momentum resolution, invariant mass resolution, Pull plots

SNOWMASS 2022

***** Features

- Backward Kalman direction implemented, in this case backward is more efficient: the initial hit is found easier and more precise (MCS not messing with the hits much)
- Multiple scattering has been added (changing the resolution by 0.1%)
- For better precision, external helical fit has been used (hits are coming from Kalman Filter, the used fit is the external one)

***** Items to have an eye on:

- Invariant Mass resolution
- Momentum resolution
- Kalman Filter parameters (Pull plots)
- Goodness of the fit (χ^2)

*** Procedure:**

- Kalman Filter
 - Forward/Backward Kalman and smoothing.
 - External helical fit.
 - Reco tracks:
 - A. Choosing either forward or backward as Reco tracks.
 - B. Matching the forward/backward Reco tracks (≥ 50 % shared
 - hits), choosing the right combo for the final Reco track collection
- Matching the Reco and the True
- Momentum resolution, invariant mass resolution, Pull plots

140⊦

July 23th, 2022

SNOWMASS 2022

***** Features

- Backward Kalman direction implemented, in this case backward is more efficient: the initial hit is found easier and more precise (MCS not messing with the hits much)
- Multiple scattering has been added (changing the resolution by 0.1%)
- For better precision, external helical fit has been used (hits are coming from Kalman Filter, the used fit is the external one)

* Items to have an eye on:

- Invariant Mass resolution
- Momentum resolution
- Kalman Filter parameters (Pull plots)
- Goodness of the fit (χ^2)

*** Procedure:**

- Kalman Filter \bullet
 - Forward/Backward Kalman and smoothing.
 - External helical fit. \bullet
 - Reco tracks:
 - A. Choosing either forward or backward as Reco tracks.
 - B. Matching the forward/backward Reco tracks ($\geq 50\%$ shared
 - hits), choosing the right combo for the final Reco track collection
- Matching the Reco and the True
- Momentum resolution, invariant mass resolution, Pull plots

SNOWMASS 2022

July 23th, 2022

Event Reconstruction

*** Kalman Event Reconstruction**

- For/Backward tracks
 - The more apart the hits the better the track recognition
 - Statistically, the backward Kalman is more efficient

Merged tracks

- Enhancing the InvarMass resolution
- Recovering the events failed in either of For/Backward process
- Saving the better reconstructed event
- by the selection
- - Accepted tracks:
 - Extrapolation of the track up to the
 - exiting point, count the # plane
 - Number of planes = 6
 - Single track efficiency ~ 80% \bullet
 - Event (pair of tracks with a vertex < 1mm)
 - efficiency ~ 60%

SNOWMASS 2022

• Any risk of double counting is eliminated

• Preliminary Efficiency estimate

96/21 = 36.50	
08/12 = 31.49	
21/13 = 22.97	
14/13 = 21.39	
]	
14	
192.92/43 = 46.66	
92.96/44 = 37.13	
204.40/44 = 47.48	
104.77/47 = 44.42	
m]	/
am	

July 23th, 2022

SNOWMASS 2022

Resolution Comparison

A. Monochromatic, simple

- single muon: fixed point,
- fixed direction
- (horizontal)
- B. My event-like muons
 - (Cylindrical distribution,
 - comparable angle to my

Zahra Gh.Moghaddam

12

10

***** Events Kinematic

• Heavy Neutrino: High P, mostly with low **0**: back to back (XY)

2-body decay

*** Vertex quality**

• Vertex residual cut < 1mm

***** Treatment for Ghosts

- Opposite charges and tracks in opposite quadrants XY
- **a** angle in XY between the ghosts or the tracks
- Theta is the angle of HNL with respect to the z-axis
- Alpha is geometrically correlated with theta
- A cut can be made for selecting the tracks from ghosts:
- " $\alpha > 2.9, \theta < 0.02$ "
- Removes most of the ghosts contaminating the signal
- The remnant ghosts:
 - No effect on the resolution (very symmetric events)
 - Compensated by a correction factor

***** Particle ID

July 23th, 2022

• Not necessary at this stage: Swapping π - μ has negligible effect on Invariant mass resolution

SNOWMASS 2022

Event Selection

***** Acceptance

- Reconstructible fraction of the total number of generated signal
 - Pre-selection FidVol
 - Cubic fiducial cut at generation step enveloping the detector
 - Reconstructible: Long tracks
 - The extrapolation of the tracks to the detector walls must include 6 or more traversed planes
- Accepted Events: A = Reconstructible/generated
- ***** Efficiency
 - Signal candidate: Track pair with opposite charge forming the invariant mass
 - $\epsilon 4 = 4$ track events/Accepted events
 - ε = Selected signal candidates/Accepted events
 - g = physical tracks/ghost tracks

Acceptance and Efficiency								
Channel	$Mass[GeV/c^2]$	Total Number of Event	A%	$\epsilon_4\%$	$\epsilon\%$	g%		
$D_s o \mu N_2$	1.7	168186	53	58	42	27		
	1.6	217118	55	57	43	26		
	1.5	212892	47	57	43	27		
	1.4	181300	62	35	26	26		
	1.3	197050	62.	57	43	28		
	1.2	186388	48	57	43	29		
	1.1	170394	55	56	41	30		
	1.0	154438	62	56	42	31		
	0.9	136468	63	57	41	32		
	0.8	119364	52	57	39	34		
	0.7	92088	63	58	38	37		
	0.6	92598	60	60	35	42		
	0.5	85674	40	61	33	52		
	0.4	80514	56	62	27	64		
	0.3	76914	60	63	18	92		

Acceptance and Efficiency

SNOWMASS 2022

July 23th, 2022

***** Generic Background

- Neutrino interaction from the beam for 6 yrs of exposure
- Single beam spill, T = 1.2s $\equiv 7.5 \times 10^{13}$ POT within the full body of detector: Number of v interactions ~ 1.3×10^{10}
- ***** Computationally Affordable Background Generation
 - First approximation:
 - v CC interactions only inside SAND inner tracker (STT)
 - Interaction inside STT is 0.74 for one single spill: 117×10^{6} v CC interactions for 6 yrs of exposure
 - Second Approximation (High statistic only at generation level):
 - Most dangerous final state to the signal: $\pi\mu$
 - Cherry picking the final state -> choosing events with final state single π (~30% of total events)
 - 30×10^6 v CC interactions for 6 yrs of exposure
 - Simulation and reconstruction steps the same as for the signal
 - Background invariant mass distribution mimicking the signal (2ph+2g tracks) **11 candidates for 6 yrs of exposure**
 - Background Modeling \bullet
 - Uniform or exponential p.d.f.

***** Subdominant Background Event Topology and selection "handles"

- Accidental vertex
 - Vertex resolution
 - Invariant Mass
- Outside vertex 2.

July 23th, 2022

Vertex resolution either/or Invariant Mass

SNOWMASS 2022

Detector element	Mass [t]	FHC	F
Magnet	511	68.9	•
\mathbf{ECAL}	100	13.5	
LAr+STT	8.2	1.1	(
STT fiducial volume	5.5	0.74	(
Total	619.2	83.5	4

https://indico.cern.ch/event/806612/attachments/1813045/2962023/A Near Detector for DUNE.pdf

Closest distance at Vertex[mm

Signal Modeling

* Signal Model (RooFit):

July 23th, 2022

- - tails

 - parametrization

SNOWMASS 2022

- * Combining parameters in Pheno-sensitivity with statistical analysis of the Signal and Background
 - Signal Model:

Hypatia p.d.f. model the invariant mass distribution with generic tails

• Background Model:

Exponential or Flat p.d.f. model the most dangerous background

- CLs Calculation (RooStats):
 - Inference calculation using frequentist approach based on likelihood ratio
 - Generating toy MC samples (~ 100 toys)
- $N_s \rightarrow U^2$: N_s is not imposed to 1 but to the number of events is corresponding to 95% CL, taking into account A, ε and g

July 23th, 2022

SNOWMASS 2022

0.2

0.4

0.6

0.8

Zahra Gh.Moghaddam

1.4

1.6

1.2

1.8

*** Summary**

- Sensitivity to Heavy Neutral Lepton has been investigated: Pheno+Detector simulation
- Theory framework: vMSM
- Lagrangian conversion: FynRules+Mathematica
- Simulation Tools: Pythia8, Mad-Dump
- Pheno-sensitivity for three benchmark couplings and

for 6 yrs of exposure $\sim 10^{-8} - 10^{-9}$

- Traget detector: SAND
- **Reconstruction Tool: Kalman Filter**
- Efficiency for single track: ~80%, track pair: ~60%
- Signal modeling: Two-sided Hypatia p.d.f.
- Most dangerous Background: $v_{\mu}CC + \pi$
- Background Modeling: Uniform and exponential p.d.f.
- 11 candidates from background for 6 yrs of exposure
- Final Sensitivity for vMSM, coupling model II, degraded by factor ~ 3 from Pheno-Sensitivity

*** Outlook**

- **Pheno**: Adding more channels, HNL production/decay
- **Simulation**: More realistic picture adding pile up
- Reconstruction: Optimization of Kalman Filter

Summary and Outlook

* Comments on Kalman Filter

- challenges
- momentum
- Pattern recognition, an external fit is used due to better results
- geometry)

SNOWMASS 2022

July 23th, 2022

• Each implementation of KF is unique with its

- Customized for this work: working decently for high
- Geometry dependent (implemented for full STT

• The Efficiency is $\sim 80\%$, meets the need of this work • It can be optimized to be used for any geometry and generic neutrino interaction event.

***** Comments on Final Sensitivity

- The final sensitivity calculation has been demonstrated within vMSM and for benchmark II
- The final sensitivity for Majorana HNLs shows a factor ~ 3 degradation with respect to the Pheno, thanks to reconstruction efficiency and low background
 - Room for improvement through optimization, but no big difference is expected
- In higher mass region the sensitivity worsens due to the larger invariant mass resolution

Community Summer Study SN & WMASS July 17-26 2022, Seattle

July 23th, 2022

SNOWMASS 2022

DEEP UNDERGROUND NEUTRINO EXPERIMENT

