Sensitivity to Heavy Neutral Leptons With SAND detector at DUNE-ND

Zahra Ghorbani Moghaddam
University of Perugia and INFN Genova
“On behalf of the DUNE Collaboration”

July 23th, 2022
Why going beyond Standard Model?

- Observed Matter anti-matter asymmetry (BAU) requires BSM
- Dark matter (Bullet cluster, Galaxy rotation, GR lensing)
- Neutrino oscillation, CPV and neutrino masses
 - SeeSaw models (low-SeeSaw, …)

ν_e - ν_μ - ν_τ - ν_MSM
BEYOND STANDARD MODEL PHYSICS

\[\mathcal{L}_{\text{MSM}} = \mathcal{L}_{\text{SM}} + \tilde{N}_I \partial^\mu \tilde{\nu}_I - F_{\mu \nu} \tilde{\nu}_{\bar{I}} - \frac{\Delta M_{IJ}}{2} \tilde{N}_I \tilde{N}_J - M_{\tilde{N}_2,3}^2 \tilde{N}_3 + h.c. \]

- # Mesons:
 - Primary
 - Secondary
- # Heavy Fermions:
 - Long lived.

\[f_1^2 : f_2^2 : f_3^2 \approx 52 : 1 : 1 \]
\[f_1^2 : f_2^2 : f_3^2 \approx 1 : 16 : 3.8 \]
\[f_1^2 : f_2^2 : f_3^2 \approx 0.061 : 1 : 4.3 \]

Steps

- **FeynRules**: Building the model based on Lagrangian Parameters and included Channels
- **Pythia**: External meson Flux (D_s)
- **Mad-Dump**: Built model + Meson flux: HNL flux and decay
- **EdepSim** → **Digitization** → **Reconstruction (Kalman Filter)**

- Theory model
- Model building
- HNL
- Meson flux generation
- MC generators
- Decaying and generation process
- ND
- FeynRules
- Converting to UFO

Particle Channel

- \(D_s \)
 - \(\rightarrow \mu N_{2,3} \)
 - \(\rightarrow \tau \nu_\tau \)
- \(\tau \)
 - \(\rightarrow \nu_\tau \mu N_{2,3} \)
 - \(\rightarrow \rho N_{2,3} \)

- \(N_{2,3} \)
 - \(\rightarrow \pi^+ \mu^- \)
 - \(\rightarrow \pi^- \mu^+ \)

Angle Distributions

Acceptance

July 23th, 2022
SNOWMASS 2022
Zahra Gh.Moghaddam
\[\mathcal{L}_{\text{MSM}} = \mathcal{L}_{\text{SM}} + \tilde{N}_i \hat{d}_\mu \mu \tilde{N}_I - F_{\alpha \alpha} \tilde{N}_I \tilde{N}_I - \frac{\Delta M_{IJ}}{2} \tilde{N}_I \tilde{N}_J - M\tilde{N}_2 \tilde{N}_3 + \text{h.c.} \]

\[
\begin{align*}
\begin{array}{c|c}
\text{f}_1^2 : f_2^2 : f_3^2 & \approx 52:1:1 \\
\end{array} & \\
\begin{array}{c|c}
\text{f}_1^2 : f_2^2 : f_3^2 & \approx 1:16:3.8 \\
\text{f}_1^2 : f_2^2 : f_3^2 & \approx 0.061:1:4.3 \\
\end{array} & \\
\end{align*}
\]

\[
\begin{array}{c|cc}
\text{Particle} & \text{Channel} & \text{Channel} \\
\hline
D_\mu & \rightarrow e N_{2,3} & \rightarrow \pi^+ \mu^- \\
D_\tau & \rightarrow \tau \nu_\tau & \rightarrow \pi^- \mu^+ \\
\tau & \rightarrow \nu_\mu \tilde{N}_{2,3} & \rightarrow \rho N_{2,3} \\
\end{array}
\]

HNL energy Spectrum

\[
\begin{array}{c}
\theta_{\mu} \\
\end{array}
\]

\[
\begin{array}{c}
\theta_{\kappa} \\
\end{array}
\]

\[
\begin{array}{c}
\# \text{Mesons:} \\
- \text{Primary} \\
- \text{Secondary} \\
\end{array}
\]

\[
\begin{array}{c}
\# \text{Heavy Fermions:} \\
- \text{Long lived} \\
\end{array}
\]

Steps

- **FeynRules**: Building the model based on Lagrangian Parameters and included Channels
- **Pythia**: External meson Flux \(D_\alpha \)
- **Mad-Dump**: Built model + Meson flux: HNL flux and decay
- **EdepSim** ➔ Digitization ➔ Reconstruction (Kalman Filter)

BEYOND STANDARD MODEL PHYSICS

THEORY MODEL

SM, BSM

MODEL BUILDING

Mathematica

HNL

Implementing model's parameters

Pythia8

Simulating and reconstruction

Decay and Generation process

MC generators

ND

Steps

- FeynRules: Building the model based on Lagrangian Parameters and included Channels
- Pythia: External meson Flux \(D_\alpha \)
- Mad-Dump: Built model + Meson flux: HNL flux and decay
- EdepSim ➔ Digitization ➔ Reconstruction (Kalman Filter)

July 23th, 2022
SNOWMASS 2022
Zahra Gh. Moghaddam

Pheno-Sensitivity

- 6 years exposure, 1.1×10^{21} NPOT/1yr
- Coupling benchmark model for the plots is II
- Small mixing between N_2 and N_3 due to BAU lower bound
- Detector’s Geometry has been modified to fit with SAND transversally
- D_s channel is dominant in this range. All D_s channels have been covered
- Regarding the model parameters and simulation tools, the estimated Pheno-sensitivity is in the ballpark of the previous studies in the D_s dominant region.

Steps to Reconstruction

- Mad-Dump output file is converted to a Genie-like output including a *RooTracker* tree
- Running Edepsim
- Digitizing
- Existing Reco didn't work for this particular event: Motivation for implementing a customized Kalman Filter
Pheno-Sensitivity

- 6 years exposure, 1.1×10^{21} NPOT/1yr
- Small mixing between N_2 and N_3 due to BAU lower bound
- Detector’s Geometry has been modified to fit with SAND transversally
- D_s channel is dominant in this range. All D_s channels has been covered
- Regarding the model parameters and simulation tools, the estimated Pheno-sensitivity is in the ballpark of the previous studies in the D_s dominant region.

Steps to Reconstruction

- Mad-Dump output file is converted to a Genie-like output including a RooTracker tree
- Detector response: Running Edepsim
- Digitization
- Reconstruction: Existing Reco didn’t work for this particular event: Motivation for implementing a customized Kalman Filter

- $U_e : U_\mu : U_\tau \sim 52 : 1 : 1$
- $U_e : U_\mu : U_\tau \sim 1 : 16 : 3.8$
- $U_e : U_\mu : U_\tau \sim 0 : 61 : 1 : 4.3$

Particle Channel

<table>
<thead>
<tr>
<th>Particle</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_s</td>
<td>$\rightarrow e N_{2,3}$</td>
</tr>
<tr>
<td></td>
<td>$\rightarrow \mu N_{2,3}$</td>
</tr>
<tr>
<td></td>
<td>$\rightarrow \tau \nu_\tau$</td>
</tr>
<tr>
<td>τ</td>
<td>$\rightarrow \nu_\tau N_{2,3}$</td>
</tr>
<tr>
<td></td>
<td>$\rightarrow \mu N_{2,3}$</td>
</tr>
<tr>
<td>$N_{2,3}$</td>
<td>$\rightarrow \pi^+ \mu^-$</td>
</tr>
<tr>
<td></td>
<td>$\rightarrow \pi^- \mu^+$</td>
</tr>
</tbody>
</table>

SNOWMASS 2022

Zahra Gh. Moghaddam

July 23th, 2022
DUNE Near Detector, SAND

- SAND (System for on-Axis Neutrino Detection)
 - Detector tracker design inside KLOE magnet
 - Tracker: ECAL + STT + Grain (LAr meniscus)
 - Simulation tools: GEANT4 and FLUKA event generators

- Geometry:
 - GDML files
- Generator:
 - GENIE
- Detector sim.:
 - Edep-sim

- Digitization: Full reconstruction
- Fast reconstruction

- Output: FLUKA format ROOT file

The development of a full reconstruction is on going

Iron yoke
Coil and cryostat
Coil and cryostat
Iron yoke
LAr meniscus
E.M. calorimeter
STT

- Near Detector Facility
- SAND
- Beam

Software SetUp
- Geometry: GDML files
- Generator: GENIE
- Detector sim.: Edep-sim
 - FLUKA-simu converter
 - Digilization
 - Full reconstruction
 - Final output: true and reconstructed quantities

"OFFICIAL"

Output: Edep-sim format ROOT file

July 23th, 2022
SNOWMASS 2022
Zahra Gh.Moghaddam
Kalman Filter is an algorithm that determines the trajectory of a state vector of a dynamical system from a set of measurements taken at different times, taking into account gaussian fluctuations.

It proceeds progressively from one measurement to the next, improving the knowledge about the trajectory with each new measurement.

There are three steps for Kalman Filter:

- **Predicting**: an estimate is made for the next measurement from current knowledge of the state vector
- **Filtering/Updating**: Kalman Filter in Theory updates the state vector using the measurement
- **Smoothing**: recursive operation, step by step in the direction opposite to that of filter

Reconstruction, Kalman Filter

\[
\begin{align*}
\hat{x}_{k-1} &= F_{k-1} \hat{x}_{k-1} \\
\hat{C}_{k-1} &= F_{k-1} C_{k-1} F_{k-1}^T + Q_k \\
\hat{p}^{-1} &= m_k - H_{k} \hat{x}_{k-1} \\
\hat{R}_{k-1}^{-1} &= V_k + H_k C_{k-1} H_k^T \\
K_k &= C_{k-1} H_k^T (H_k C_{k-1} H_k^T)^{-1} \\
\hat{x}_k &= \hat{x}_{k-1} + K_k (m_k - H_k \hat{x}_{k-1}) \\
R_k &= (1 - K_k H_k) V_k \\
C_k &= (1 - K_k H_k) C_{k-1} \\
\hat{C}_{k,F} &= r_k^T R_{k-1}^{-1} r_k \\
A_k &= C_k F_{k+1} (C_{k+1})^{-1} \\
\hat{x}^n_{k} &= \hat{x}_k + A_k (\hat{x}^n_{k+1} - \hat{x}_{k+1}) \\
\hat{p}^n &= m_k - H_k \hat{x}_k \\
R^n_k &= R_k - H_k A_k (C^n_{k+1} - C^n_{k+1}) A_k^T H_k^T \\
C^n_k &= C_k + A_k (C^n_{k+1} - C^n_{k+1}) A_k^T
\end{align*}
\]

\[
X = (x, y, t_x, t_y, \frac{q}{P_T})
\]

\[
\frac{q}{P_T} \left[e \over GeV \right] = \frac{1}{R \times 0.3 \times B}
\]
Kalman Filter, Toy MC

Toy MC
- Toy MC starting with one single track, moved to multiple tracks, noise hits added
- **Kalman Direction:** Forward/Backward
- **Measurements:**
 - Assuming uniform B field, 0.6 T, constant δz for the planes (ideal, zero thickness)
 - RN generation with uniform distribution for initial position and initial momentum
 - For each plane X, Y according to analytic extrapolation, with 95% efficiency
 - Smearing 0.1mm for X and Y

Kalman Filter Procedure:
- Sequentially adding new information on each hits to get an optimal track
- **Strategy:**
 - Prediction and Update (Filtering, Residual, χ^2): forward and backward, Smoothing

Customized Kalman Filter General Assumption
- Prediction step is an analytical extrapolation
- Discreteness in z direction

Toy MC starting with one single track, moved to multiple tracks, noise hits added
- **Kalman Direction:** Forward/Backward
- **Measurements:**
 - Assuming uniform B field, 0.6 T, constant δz for the planes (ideal, zero thickness)
 - RN generation with uniform distribution for initial position and initial momentum
 - For each plane X, Y according to analytic extrapolation, with 95% efficiency
 - Smearing 0.1mm for X and Y
Kalman Filter, from Toy MC to Geant4 MC

Forward

\[f_0 \xrightarrow{P_1} f_1 \xrightarrow{P_2} f_2 \xrightarrow{P_3} f_3 \xrightarrow{P_{n-1}} f_{n-1} \]

Backward

\[f_0 \xleftarrow{P_{n-1}} f_1 \xleftarrow{P_{n-2}} f_2 \xleftarrow{P_{n-3}} f_3 \xleftarrow{P_n} f_n \]

Preparation for Geant4 MC

- Mad-Dump: Genie-like output
- EdepSim `nd_hall_kloe_sttonly.gdml`: Edep-Sim output
- Digitization (200 μm smearing): wire position added (to meet with Kalman Filter discrete process that goes in steps, e.g. zero uncertainty on z coordinate of the plane)
- X,Y hits are combined into an extrapolated measurement at the z of the wire of the upstream plane of the module

Kalman Filter Geant4 MC

- HNL sample 1 GeV mass, \(D_x \rightarrow N \mu \), \(U_e : U_\tau : U_{\mu} \sim 1 : 16 : 3.8 \)
- Forward/Backward

Customized Kalman Filter Assumptions

- Straw modules: XXYY or XXYYXX (present in this geometry)
- Uniform B field, 0.6 T
- Processing hits:

 Separate measurement for X and Y are recombined to (X, Y) referring to the z of the first straw layer of each module

July 23th, 2022

SNOWMASS 2022

Zahra Gh. Moghaddam
Momentum Resolution

- Sigma 0.2% contribution of the Kalman Filter process to momentum resolution
 - Detector’s contribution under-estimated by the simple simulation approach
- Toy MC could be improved:
 - Mimic a closer geometry to the real one, e.g. the separate measurements for X and Y
 - Individual effects like MS can be studied

Efficiency

- Seems to find all tracks up to 10 tracks but a realistic estimate on efficiency is not worth for this toy MC
Kalman Filter, GEANT4 MC, Event Display

- No MC matching
- The hits: digitization
- The solid lines: Kalman Filter
- The ghosts usually are not back to back (potential discriminant for this channel)
- The χ^2:
 - Point rejection (Update stage) χ^2 threshold ≈ 30
- The external fit χ^2 for the tracks
- The bottom graphs show the spatial residual fluctuations

July 23th, 2022

SNOWMASS 2022

Zahra Gh. Moghaddam
Dominant contributions to Invariant Mass (besides Momentum)

- **Quality of the Vertex:** < 1mm (most of statistics)
- **Quality of the Reco final product angle:** The final product angle resolution is around 30 [mrad] up to 25 [GeV]
- **MC truth Matching angle (preliminary):**

 Significant tail on the single particle angle resolution (currently cut by MC truth matching ~ 20 [mrad])
• Features
 • Backward Kalman direction implemented, in this case backward is more efficient: the initial hit is found easier and more precise (MCS not messing with the hits much)
 • Multiple scattering has been added (changing the resolution by 0.1%)
 • For better precision, external helical fit has been used (hits are coming from the hits much)
• Items to have an eye on:
 • Invariant Mass resolution
 • Momentum resolution
 • Kalman Filter parameters (Pull plots)
 • Goodness of the fit (χ^2)
• Procedure:
 • Kalman Filter
 • Forward/Backward Kalman and smoothing.
 • External helical fit.
 • Reco tracks:
 A. Choosing either forward or backward as Reco tracks.
 B. Matching the forward/backward Reco tracks ($\geq 50\%$ shared hits), choosing the right combo for the final Reco track collection
 • Matching the Reco and the True
 • Momentum resolution, invariant mass resolution, Pull plots
Features

- Backward Kalman direction implemented, in this case backward is more efficient: the initial hit is found easier and more precise (MCS not messing with the hits much)
- Multiple scattering has been added (changing the resolution by 0.1%)
- For better precision, external helical fit has been used (hits are coming from Kalman Filter, the used fit is the external one)

Items to have an eye on:

- Invariant Mass resolution
- Momentum resolution
- Kalman Filter parameters (Pull plots)
- Goodness of the fit (χ^2)

Procedure:

- Kalman Filter
- Forward/Backward Kalman and smoothing.
 - External helical fit.
 - Reco tracks:

 A. Choosing either forward or backward as Reco tracks.
 B. Matching the forward/backward Reco tracks (≥ 50% shared hits), choosing the right combo for the final Reco track collection

- Matching the Reco and the True
- Momentum resolution, invariant mass resolution, Pull plots

Images:

- Forward Kalman: Kalman Filter parameters (Pull plots)
- Backward Kalman: Kalman Filter parameters (Pull plots)

Formulas:

$\frac{\delta p}{p}$

Graphs:

- Forward Kalman: Invariant Mass resolution, Momentum resolution, Pull plots
- Backward Kalman: Invariant Mass resolution, Momentum resolution, Pull plots
Kalman Filter, GEANT4 MC

Features

- Backward Kalman direction implemented, in this case backward is more efficient: the initial hit is found easier and more precise (MCS not messing with the hits much)
- Multiple scattering has been added (changing the resolution by 0.1%)
- For better precision, external helical fit has been used (hits are coming from Kalman Filter, the used fit is the external one)

Items to have an eye on:

- Invariant Mass resolution
- Momentum resolution
- Kalman Filter parameters (Pull plots)
- Goodness of the fit (χ^2)

Procedure:

- Kalman Filter
 - Forward/Backward Kalman and smoothing.
 - External helical fit.
 - Reco tracks:
 A. Choosing either forward or backward as Reco tracks.
 B. Matching the forward/backward Reco tracks ($\geq 50\%$ shared hits), choosing the right combo for the final Reco track collection
 - Matching the Reco and the True
 - Momentum resolution, invariant mass resolution, Pull plots

Procedure:

GeV2/c4
• **Features**
 - Backward Kalman direction implemented, in this case backward is more efficient: the initial hit is found easier and more precise (MCS not messing with the hits much)
 - Multiple scattering has been added (changing the resolution by 0.1%)
 - For better precision, external helical fit has been used (hits are coming from Kalman Filter, the used fit is the external one)

• **Items to have an eye on:**
 - Invariant Mass resolution
 - Momentum resolution
 - Kalman Filter parameters (Pull plots)
 - Goodness of the fit (χ^2)

• **Procedure:**
 - Kalman Filter
 - Forward/Backward Kalman and smoothing.
 - External helical fit.
 - Reco tracks:
 - A. Choosing either forward or backward as Reco tracks.
 - B. Matching the forward/backward Reco tracks ($\geq 50\%$ shared hits), choosing the right combo for the final Reco track collection.
 - Matching the Reco and the True
 - Momentum resolution, invariant mass resolution, Pull plots

Features

- Backward Kalman direction implemented, in this case backward is more efficient: the initial hit is found easier and more precise (MCS not messing with the hits much).
- Multiple scattering has been added (changing the resolution by 0.1%).
- For better precision, external helical fit has been used (hits are coming from Kalman Filter, the used fit is the external one).

Items to have an eye on:

- Invariant Mass resolution
- Momentum resolution
- Kalman Filter parameters (Pull plots)
- Goodness of the fit (χ^2)

Procedure:

- Kalman Filter
 - Forward/Backward Kalman and smoothing.
 - External helical fit.
 - Reco tracks:
 - A. Choosing either forward or backward as Reco tracks.
 - B. Matching the forward/backward Reco tracks ($\geq 50\%$ shared hits), choosing the right combo for the final Reco track collection.
- Matching the Reco and the True
- Momentum resolution, invariant mass resolution, Pull plots.

SNOWMASS 2022

Zahra Gh.Moghaddam

Features

- Backward Kalman direction implemented, in this case backward is more efficient: the initial hit is found easier and more precise (MCS not messing with the hits much).
- Multiple scattering has been added (changing the resolution by 0.1%).
- For better precision, external helical fit has been used (hits are coming from Kalman Filter, the used fit is the external one).

Items to have an eye on:

- Invariant Mass resolution
- Momentum resolution
- Kalman Filter parameters (Pull plots)
- Goodness of the fit (χ^2)

Procedure:

- Kalman Filter
 - Forward/Backward Kalman and smoothing.
 - External helical fit.
 - Reco tracks:
 - A. Choosing either forward or backward as Reco tracks.
 - B. Matching the forward/backward Reco tracks ($\geq 50\%$ shared hits), choosing the right combo for the final Reco track collection.
- Matching the Reco and the True
- Momentum resolution, invariant mass resolution, Pull plots.

SNOWMASS 2022

Zahra Gh.Moghaddam

Features

- Backward Kalman direction implemented, in this case backward is more efficient: the initial hit is found easier and more precise (MCS not messing with the hits much).
- Multiple scattering has been added (changing the resolution by 0.1%).
- For better precision, external helical fit has been used (hits are coming from Kalman Filter, the used fit is the external one).

Items to have an eye on:

- Invariant Mass resolution
- Momentum resolution
- Kalman Filter parameters (Pull plots)
- Goodness of the fit (χ^2)

Procedure:

- Kalman Filter
 - Forward/Backward Kalman and smoothing.
 - External helical fit.
 - Reco tracks:
 - A. Choosing either forward or backward as Reco tracks.
 - B. Matching the forward/backward Reco tracks ($\geq 50\%$ shared hits), choosing the right combo for the final Reco track collection.
- Matching the Reco and the True
- Momentum resolution, invariant mass resolution, Pull plots.
Event Reconstruction

- Kalman Event Reconstruction
 - For/Backward tracks
 - The more apart the hits the better the track recognition
 - Statistically, the backward Kalman is more efficient
 - Merged tracks
 - Enhancing the InvarMass resolution
 - Recovering the events failed in either of For/Backward process
 - Saving the better reconstructed event
 - Any risk of double counting is eliminated by the selection
 - Preliminary Efficiency estimate
 - Accepted tracks:
 - Extrapolation of the track up to the exiting point, count the # plane
 - Number of planes = 6
 - Single track efficiency ~ 80%
 - Event (pair of tracks with a vertex< 1mm) efficiency ~ 60%
Resolution Comparison

Samples

A. Monochromatic, simple single muon: fixed point, fixed direction (horizontal)
B. My event-like muons (Cylindrical distribution, comparable angle to my sample)
C. HNL sample
Events Kinematic
- Heavy Neutrino: High P, mostly with low θ: back to back (XY) 2-body decay

Vertex quality
- Vertex residual cut < 1 mm

Treatment for Ghosts
- Opposite charges and tracks in opposite quadrants XY
- α angle in XY between the ghosts or the tracks
- Theta is the angle of HNL with respect to the z-axis
- Alpha is geometrically correlated with theta
- A cut can be made for selecting the tracks from ghosts: “α > 2.9, θ < 0.02”
 - Removes most of the ghosts contaminating the signal
 - The remnant ghosts:
 - No effect on the resolution (very symmetric events)
 - Compensated by a correction factor

Particle ID
- Not necessary at this stage: Swapping π-μ has negligible effect on Invariant mass resolution

Event Selection

Ghosts
- Entries: 1487
- Mean x: 0.02029
- Mean y: 2.581
- Std Dev x: 0.00285
- Std Dev y: 0.3964
- Integral: 1487
- Underflow: 0
- Overflow: 358

Tracks
- Entries: 1487
- Mean x: 0.050227
- Mean y: 3.058
- Std Dev x: 0.006691
- Std Dev y: 0.095233
- Integral: 1487
- Underflow: 0
- Overflow: 358

Symmetric event

July 23th, 2022

SNOWMASS 2022

Zahra Gh.Moghaddam
Acceptance

- Reconstructible fraction of the total number of generated signal
 - Pre-selection FidVol
 - Cubic fiducial cut at generation step enveloping the detector
 - Reconstructible: Long tracks
 - The extrapolation of the tracks to the detector walls must include 6 or more traversed planes
- Accepted Events: \(A = \text{Reconstructible}/\text{generated} \)

Efficiency

- Signal candidate: Track pair with opposite charge forming the invariant mass
- \(\epsilon_4 = 4 \) track events/Accepted events
- \(\epsilon = \) Selected signal candidates/Accepted events
- \(g = \) physical tracks/ghost tracks

Acceptance and Efficiency

<table>
<thead>
<tr>
<th>Channel</th>
<th>Mass [GeV/c^2]</th>
<th>Total Number of Event</th>
<th>A%</th>
<th>(\epsilon_4)%</th>
<th>(\epsilon)%</th>
<th>g%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>161816</td>
<td>53</td>
<td>58</td>
<td>42</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>217118</td>
<td>55</td>
<td>57</td>
<td>43</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>212892</td>
<td>47</td>
<td>57</td>
<td>43</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>181300</td>
<td>62</td>
<td>57</td>
<td>43</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>197050</td>
<td>62</td>
<td>57</td>
<td>43</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>186388</td>
<td>48</td>
<td>57</td>
<td>43</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>170394</td>
<td>55</td>
<td>56</td>
<td>41</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>154438</td>
<td>62</td>
<td>56</td>
<td>42</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>136468</td>
<td>63</td>
<td>57</td>
<td>41</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>119364</td>
<td>62</td>
<td>57</td>
<td>39</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>92088</td>
<td>63</td>
<td>58</td>
<td>38</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>92598</td>
<td>60</td>
<td>60</td>
<td>35</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>85674</td>
<td>40</td>
<td>61</td>
<td>33</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>80514</td>
<td>56</td>
<td>62</td>
<td>27</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>76914</td>
<td>60</td>
<td>63</td>
<td>18</td>
<td>92</td>
<td></td>
</tr>
</tbody>
</table>

\(D_s \rightarrow \mu N_2 \)
- **Generic Background**
 - Neutrino interaction from the beam for 6 yrs of exposure
 - Single beam spill, $T = 1.2s \equiv 7.5 \times 10^{13}$ POT within the full body of detector: Number of ν interactions $\sim 1.3 \times 10^{10}$

- **Computationally Affordable Background Generation**
 - **First approximation:**
 - ν CC interactions only inside SAND inner tracker (STT)
 - Interaction inside STT is 0.74 for one single spill: 117×10^6 ν CC interactions for 6 yrs of exposure
 - **Second Approximation (High statistic only at generation level):**
 - Most dangerous final state to the signal: $\pi\mu$
 - Cherry picking the final state -> choosing events with final state single π (~30% of total events)
 - 30×10^6 ν CC interactions for 6 yrs of exposure
 - Simulation and reconstruction steps the same as for the signal
 - Background invariant mass distribution mimicking the signal (2ph+2g tracks) ➔ **11 candidates for 6 yrs of exposure**

- **Background Modeling**
 - Uniform or exponential p.d.f.

- **Subdominant Background Event Topology and selection “handles”**
 1. Accidental vertex
 - Vertex resolution
 - Invariant Mass
 2. Outside vertex
 - Vertex resolution either/or Invariant Mass

Detector element

<table>
<thead>
<tr>
<th>Detector element</th>
<th>Mass [t]</th>
<th>FHC</th>
<th>RHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnet</td>
<td>511</td>
<td>68.9</td>
<td>36.6</td>
</tr>
<tr>
<td>ECAL</td>
<td>100</td>
<td>13.5</td>
<td>7.2</td>
</tr>
<tr>
<td>LAr+STT</td>
<td>8.2</td>
<td>1.1</td>
<td>0.59</td>
</tr>
<tr>
<td>STT fiducial volume</td>
<td>5.5</td>
<td>0.74</td>
<td>0.39</td>
</tr>
<tr>
<td>Total</td>
<td>619.2</td>
<td>83.5</td>
<td>44.39</td>
</tr>
</tbody>
</table>

https://indico.cern.ch/event/806612/attachments/1813045/2962023/A_Near_Detector_for_DUNE.pdf
Signal Model (RooFit):

- Two-sided Hypatia distribution as signal p.d.f:
 - Hyperbolic core of a crystal-ball-like G function and two tails
 - Model the invariant mass distribution with generic tails
 - Fitting the signal with Hypatia gives a much better parametrization

HNL Signal ($m_{HNL} = 0.3$)

![Graph showing HNL Signal with a two-sided Hypatia distribution](image)

HNL Signal ($m_{HNL} = 1.0$)

![Graph showing HNL Signal with a two-sided Hypatia distribution](image)

HNL Signal ($m_{HNL} = 1.7$)

![Graph showing HNL Signal with a two-sided Hypatia distribution](image)

Expressions in Hypatia

\[
\text{Hypatia}_2(x, \mu, \sigma, \lambda, \beta, a_1, n_1, a_\tau, n_\tau) = \begin{cases}
 \frac{G(\mu-a_\sigma, \mu, \sigma, \lambda, \beta, \tau) - \lambda}{\sqrt{1 - \gamma(\gamma - 1)}} & \text{if } \frac{x-\mu}{\sigma} < -a_1 \\
 (x - \mu)^2 + A_\lambda(\zeta)^2 \lambda^{-\frac{1}{2}} e^{(x-\mu)} K_{\lambda-\frac{1}{2}} \left(\zeta \sqrt{1 + \left(\frac{x-\mu}{\lambda(\zeta)\sigma} \right)^2} \right) & \text{otherwise}
\end{cases}
\]
Combining parameters in Pheno-sensitivity with statistical analysis of the Signal and Background

- **Signal Model:**
 - Hypatia p.d.f. model the invariant mass distribution with generic tails

- **Background Model:**
 - Exponential or Flat p.d.f. model the most dangerous background

- **CLs Calculation (RooStats):**
 - Inference calculation using frequentist approach based on likelihood ratio
 - Generating toy MC samples (~ 100 toys)

- **N_s \rightarrow U^2:** N_s is not imposed to 1 but to the number of events is corresponding to 95% CL, taking into account A, ε and g
Summary

- Sensitivity to Heavy Neutral Lepton has been investigated: Pheno+Detector simulation
- Theory framework: vMSM
- Lagrangian conversion: FynRules+Mathematica
- Simulation Tools: Pythia8, Mad-Dump
- Pheno-sensitivity for three benchmark couplings and for 6 yrs of exposure $\sim 10^{-8} - 10^{-9}$
- Target detector: SAND
- Reconstruction Tool: Kalman Filter
- Efficiency for single track: ~80%, track pair: ~60%
- Most dangerous Background: ν_μCC +π
- Background Modeling: Uniform and exponential p.d.f.
- 11 candidates from background for 6 yrs of exposure
- Final Sensitivity for vMSM, coupling model II, degraded by factor ~ 3 from Pheno-Sensitivity

Outlook

- **Pheno:** Adding more channels, HNL production/decay
- **Simulation:** More realistic picture adding pile up
- **Reconstruction:** Optimization of Kalman Filter

Comments on Final Sensitivity

- The final sensitivity calculation has been demonstrated within vMSM and for benchmark II
- The final sensitivity for Majorana HNLs shows a factor ~ 3 degradation with respect to the Pheno, thanks to reconstruction efficiency and low background
- Room for improvement through optimization, but no big difference is expected
- In higher mass region the sensitivity worsens due to the larger invariant mass resolution

Comments on Kalman Filter

- Each implementation of KF is unique with its challenges
- Customized for this work: working decently for high momentum
- Pattern recognition, an external fit is used due to better results
- Geometry dependent (implemented for full STT geometry)
- The Efficiency is $\sim 80\%$, meets the need of this work
- It can be optimized to be used for any geometry and generic neutrino interaction event.
THANKS!