Low-energy neutrino physics at Theia

Zara Bagdasarian^{1,2}, for the Theia collaboration

¹University of California, Berkeley; ²Lawrence Berkeley National Laboratory

Seattle Snowmass Summer Meeting 2022 July 24th 2022

Theia: advanced optical multipurpose neutrino detector

Cutting edge developments in the target material and photodetection

Broad physics program: Studying neutrino fundamental properties and astrophysical objects

How to broaden the current physics reach

Scintillation Detectors:
High light yield
Low energy threshold
Good energy and position

resolutions

S Limited in size by absorption and cost

S Limited directionality

Water-based Liquid Scintillation (WbLS) Detectors: Get best of two worlds

Cherenkov Detectors:

- **Oirectional information**
- Can be very large (low
- absorption)
- Particle ID at high energies
- No access to physics below
- the Cherenkov threshold
- S Low light yield

Water-based Liquid Scintillator - Basics

- Water-based Liquid Scintillator (WbLS) is a mixture of pure water and oil-based liquid scintillator
- WbLS is made using a surfactant (soap-like) such as PRS* (hydrophilic head and hydrophobic tail) to hold the scintillator molecules in water in a "micelle" structure
- Combines the advantages of water (transparency, low cost) and liquid scintillator (high light yield)

See Tanner Kaptanoglu's Talk for more info

UNIVERSITY OF CALIFORNIA

Large area picosecond photodetectors LAPPDs (~70 ps TTS) or other fast photodetectors

B.W.Adams et al. NIM A Volume 795, 1 (2015)

- Dichroic filters
- Red-sensitive PMTs
- Filtering

T. Kaptanoglu et al. Phys. Rev. D 101, 072002 (2020)

solar neutrinos (CNO, 8B)

geoneutrinos

diffuse supernova neutrinos (DSNB)

supernova burst neutrinos

detector

- Large scale, multipurpose
- Baseline: 25ktonne (17kt FV) Ideal: 100 ktonne (70kt FV) Scintillator fraction tunable depending on the physics goal ->staged approach

neutrino mass ordering

neutrino CP-violating phase δ

neutrinoless double beta decay

solar neutrinos (CNO, 8B)

geoneutrinos

diffuse supernova neutrinos (DSNB)

supernova burst neutrinos

detector lacksquare

- Large scale, multipurpose
- Baseline: 25ktonne (17kt FV) Ideal: 100 ktonne (70kt FV) Scintillator fraction tunable depending on the physics goal ->staged approach

neutrino mass ordering

neutrino CP-violating phase δ

neutrinoless double beta decay

Solar neutrinos

pp chain reaction ($\sim 99\%$)

 $4p \rightarrow ^4 \text{He} + 2e^+ + 2\nu_e$

Released energy ~26 MeV

CNO cycle (<1%)

Theia: Solar neutrinos

Theia can significantly contribute to solar neutrinos studies:

- CNO neutrinos (directionality based background rejection, solar metallicity puzzle)
- ⁸B solar neutrinos high-statistics, low-threshold -> new physics in the MSW-vacuum transition region

M. Maltoni, A. Smirnov Eur. Phys. J. A 52, 87 (2016)

solar neutrinos (CNO, ⁸B)

geoneutrinos

diffuse supernova neutrinos (DSNB)

supernova burst neutrinos

detector lacksquare

THEIA: An advanced optical neutrino detector Eur. Phys. J. C 80, 416

- Large scale, multipurpose
- Baseline: 25ktonne (17kt FV) Ideal: 100 ktonne (70kt FV) Scintillator fraction tunable depending on the physics goal ->staged approach

neutrino mass ordering

neutrino CP-violating phase δ

neutrinoless double beta decay

Geoneutrinos

 $^{238}U \rightarrow^{206}Pb + 8 \alpha + 6 e^- + 6 \overline{\nu} + 51.7 MeV$ $^{232}Th \rightarrow^{208} Pb + 6 \alpha + 4 e^{-} + 6 \overline{\nu} + 42.8 MeV$ $^{40}K \rightarrow ^{40}Ca + e^- + \overline{\nu} + 1.32 MeV$

 Currently only two measurements: Borexino (Italy), KamLAND (Japan)

Theia: Geoneutrinos

S.Zsoldos, Z. Bagdasarian et al Antineutrino sensitivity at THEIA https://doi.org/10.48550/arXiv.2204.12278

Berkelev

- Likelihood fit extracting geoneutrinos rate with 8.6% precision and reactor neutrons with 6.7% precision in just one year
- Extracting U and Th individual rates, and measuring Th/U ratio with 56%-15% precision
- First high statistics measurement in a new geographical location useful to extract mantle contribution

solar neutrinos (CNO, ⁸B)

geoneutrinos

diffuse supernova neutrinos (DSNB)

supernova burst neutrinos

vanced ontical n

- Large scale, multipurpose detector
- Baseline: 25ktonne (17kt FV)
 Ideal: 100 ktonne (70kt FV)
 Scintillator fraction tunable depending on the physics goal
 ->staged approach

neutrino mass ordering

neutrino CP-violating phase δ

neutrinoless double beta decay

Theia: supernova burst neutrinos

- dynamics of the core collapse (neutronization) reheating, proto-neutron star cooling)
- the properties of the neutrinos themselves (mass hierarchy, absolute mass scale, collective oscillations)

Only one observed: SN1987A

- Flavor-resolved neutrino spectra
- low energy threshold/good energy resolutions
- Supernova pointing
- Separate ES from IBD events for directionality.

,	Expected event rates in 100kt 10% WbLS for SN at 10kpc:			
	Reaction		Rate	
	(IBD)	$\bar{\nu}_e + p \rightarrow n + e^+$	19,800	
	(ES)	$v + e \rightarrow e + v$	960	
	$(v_e O)$	${}^{16}\mathrm{O}(v_e, e^-){}^{16}\mathrm{F}$	340	
	$(\bar{\nu}_e O)$	${}^{16}{ m O}(\bar{\nu}_e, e^+){}^{16}{ m N}$	440	
	(NCO)	${}^{16}O(\nu,\nu){}^{16}O^*$	1100	

- At LBNF: the combination of WbLS (THEIA) and liquid argon (DUNE) detectors at the same site -> high-statistics co-detection of neutrinos and antineutrinos.
- Complementarity to JUNO and Hyper-K: opposite side of the Earth -> Earth matter effects
- Pre-supernova neutrinos

Theia: Diffuse supernova neutrino background (DSNB)

Diffuse, isotropic flux of v from all SN explosions in the Universe.

Not yet experimentally observed

- Cherenkov/Scintillation (C/S) ratio gives a powerful handle to discriminate atmospheric neutral current background signals;
- substantial increase in event statistics when added to Super-K and JUNO;
- 5σ discovery (125 kton-year): ~8 years (Theia-25) or lacksquare~2 years (Theia-100)

J.	С	80,	416

Conclusions

- talk by Leon)
- Directionality in solar neutrino analysis
- Likelihood fit extracting geoneutrinos rate with 8.6% precision and reactor neutrons with 6.7% precision in just one year. Extracting U and Th individual rates, and measuring Th/U ratio with 56%-15% precision
- High-statistics and reach physics potential for supernova burst neutrinos
- High-statisctics diffuse supernova neutrino background (currently not) observed)

Broad low energy program to complement the high-energy program (see next)

THEIA Collaboration

Toronto

China Tsinghua

Aachen Dresden Hamburg Jülich

SISSA/INFN

Korea CUP

Erciyes

UK King's College Sheffield

Cornell

U. Hawaii

FNAL

QUESTIONS ARE WELCOME now

or later @ZaraBagdasarian zara.bagdasarian@berkeley.edu https://www.zarabagdasarian.com

MIT U. Penn PNNL Rutgers

Stony Brook UC Berkeley UC Davis UC Irvine UCLA

