

High-energy physics program in THEIA

Leon Pickard
UC Davis

Introduction

- * The THEIA collaboration
- * How does WbLS contribute to the THEIA high energy program?
- * Long-baseline physics in THEIA
- * THEIA and nucleon decay
- * THEIA contributions to atmospheric neutrino measurements

The THEIA collaboration

- * A large international effort
- * Over 80 collaborators
- * 10 countries
- * 38 institutions

* Offers an exciting expansion to the high-energy neutrino community

What is WbLS?

- * Water-based liquid scintillator (WbLS) is an aggregation of water and oil based liquid scintillator.
- * The idea is to create a novel detector medium which achieves the benefits of both water Cherenkov detection and liquid scintillator detection.
- * Produce "micelles" in which the liquid scintillator, such as PPO-doped LAB, droplets are surrounded by a surfactant.
- * The surfactant's hydrophilic head acts as a barrier that is "in contact" with the water, whilst its hydrophobic tail is sequestered within the scintillator medium.
- * This allows the liquid scintillator micelles to homogenise throughout the water.
- * This innovative detection medium has the capability to further enhance next-generation neutrino experimentation.

Combining liquid scintillators and water is non-trivial, an innovative approach is needed.

WbLS uses surfactants to form nm-scale micelles of liquid scintillator, such that a suspension can be formed.

THEIA25 visualization using Chroma

How will WbLS help the high-energy neutrino effort?

What is THEIA?

- THEIA25 is a proposed 25kTon experiment designed to fit alongside the DUNE far detectors
- THEIA is an ambitious 100kTon upgrade to this idea
- Will use novel fast photosensors
- Employ photon sorting techniques
- The unique WbLS nature allows for energies from MeV to GeV to be explored
- This will make THEIA arguably the most far-reaching neutrino experiment ever built

The preliminary
THEIA design has a
70kTon fiducial
volume

Unresolved issues in long-baseline physics

* What value does δ take?

- * What is the neutrino mass hierarchy?
- * What octant does θ_{23} lie in?
- * PMNS parameter degeneracy makes these questions challenging to resolve.
- * However, THEIA is well equipped to elucidate the answers.

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) = & 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\Phi_{31}(1 + \frac{2a}{\Delta m_{31}^{2}}(1 - 2S_{13}^{2})) \\ +8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta_{CP} - S_{12}S_{13}S_{23})\cos\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \\ -8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta_{CP}\sin\Phi_{32}\sin\Phi_{31}\sin\Phi_{21} \\ +4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta_{CP})\sin^{2}\Phi_{21} \\ -8C_{13}^{2}S_{13}^{2}S_{23}^{2}(1 - 2S_{13}^{2})\frac{aL}{4E_{\nu}}\cos\Phi_{32}\sin\Phi_{31}, \end{split}$$

Matter effect

CP violating phase

$$\phi_{ji} = \Delta m_{ji}^2 L/4E_{\nu}$$

$$a \equiv 2\sqrt{2}G_F n_e E_{\nu} = 7.56 \times 10^{-5} [eV^2] (\frac{\rho}{[g/cm^3]}) (\frac{E_{\nu}}{[GeV]})$$

THEIA will achieve a mass hierarchy determination within 7 years

- * A simple water target in THEIA, located in the LBNF beam, can achieve a 50 mass hierarchy determination
- * This is due to recent vast improvements in NC background rejection, e/µ particle identification and multi-ring event utilization.
- * Analysis here uses a 9-sample likelihood fit with identical beam related systematics as presented in the DUNE CDR.
- * However, organic loading, with novel photon sorting techniques developed by THEIA collaborators will further improve efficiency, purity and PID!

THEIA 100 has the capability to reach a 5σ CPV determination

THEIA can add to existing θ_{23} long-baseline data sets

- * Using the ν_{μ} disappearance channel, THEIA will contribute to the global θ_{23} data set
- * Will provide different systematic uncertainties to T2K, NOVA and MINOS
- * Furthermore, by introducing atmospheric neutrino data into the fit, THEIA can help to break the octant degeneracy associated with long-baseline measurements

THEIA will be a world leading nucleon decay experiment

- Due to WbLS's scintillation and Cherenkov emission properties, THEIA will have unique advantages compared to existing and future nucleon decay detectors
- For modes in which low-thresholds are not essential, such as $p \rightarrow e^+ + \pi^0$, THEIA will perform comparably to water Cherenkov detectors.
- For modes with below Cherenkov threshold mesons, such as $p \to \tilde{v}_+ K_+$, THEIA is able to perform coincidence tagging.
- For modes with invisible decays, such as $n \to 3_V$, due to its huge volume, low energy threshold, and depth, THEIA will far exceed all other experiments.

A brief look at atmospheric neutrinos...

- Due to earth matter effects for atmospheric neutrino events, combining with accelerator data helps to break the θ₂₃ octant degeneracy
- Many more potential contributions to the field...
- East-west geomagnetic effect?
- Solar wind modulation?
- Absolute flux determination?

Conclusions

- THEIA is a proposed 100kTon experiment with the capability to become the most farreaching neutrino experiment ever built
- By deploying a novel WbLS volume, THEIA will benefit from both Cherenkov and scintillation emission
- This unique target will greatly benefit the long-baseline effort, culminating in a possible 5 σ CPV measurement
- THEIA will also excel as a nucleon decay detector, with the ability to produce world-leading measurements in challenging decay modes
- Furthermore, THEIA can probe atmospheric neutrinos, providing valuable data to the community
- For the extensive low-energy physics program of THEIA, see Zara Bagdasarian's talk!