

Accelerator Neutrino Oscillation Experiments: This Generation and Next

Kevin Wood, <u>kwood@lbl.gov</u> July 24, 2022 Snowmass Community Summer Study Early Career Session

Introduction

- Operating long-baseline accelerator neutrino oscillation experiments will transition into the next generation of experiments in the next decade
 - This generation: T2K + NOvA
 - Next generation: T2HK + DUNE
 - Both pairs of experiments offer complementary
 - Getting the most information out of the data sets from the current generation of such experiments is an important exercise that can inform the process of bringing up the next generation of experiments

 Disclaimer: I am a T2K and DUNE collaborator, but I am speaking today as a(n early career) member of the Neutrino community.

Long-Baseline Accelerator Neutrino Oscillations

BERKELEY LAB

Tunable neutrino source

Masud, M., Bishai, M. & Mehta, P. Extricating New Physics Scenarios at DUNE with Higher Energy Beams. Sci Rep 9, 352 (2019)

K. Wood - Snowmass 2022 NF Early Career Session

The off-axis "trick"

Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics, arXiv:2002.03005

Long-Baseline Accelerator Neutrino Oscillations

Long-Baseline Accelerator Neutrino Oscillations

Current Generation Experiments

ite 🖵 T2K near site

Japan

T2K	NOvA
Flux peak ~600 MeV	Flux peak ~2 GeV
295 km baseline	810 km baseline
CCQE dominant interaction mode	Broad mix of interaction modes
Reconstruct energy from lepton kinematics	Calorimetric energy reconstruction
FD 2.5° off axis	FD 1.5° off axis
Different ND and FD technologies	Functionally identical ND and FD
ND constrains systematics in the model (<i>fit</i>)	ND tunes FD pred. without fitting

··· ≤ 68% CL

% CL

3π

2

--- < 68% CL

 2π

Current Generation Experiments

Site LI T2K near site

Japan

Complementarity that breaks degeneracies otherwise present in standalone experiments.

K. Wood - Snowmass 2022 NF Early Career Session

Current Generation Experiments

far site 🛄 T2K near site Japan

- NOvA and T2K collaborations pursuing joint analysis
- Exploit the aforementioned complementarity and leverage all of the sophisticated analysis tools/considerations from each standalone experiment
- Targeting a release this year stay tuned!

K. Wood - Snowmass 2022 NF Early Career Session

T2HK far site T2HK near site

Japan

·····

T2HK	DUNE
Flux peak ~600 MeV, narrow band	Broad band beam up to ~5 GeV
295 km baseline	1300 km baseline
CCQE dominant interaction mode	Broad mix of interaction modes
FD 2.5° off axis	FD on axis
Water Cherenkov FD (258 kton total H ₂ O)	LArTPC FD (1st two modules)
1.3 MW beam	1.2 MW \rightarrow 2.4 MW beam
ND280 upgrade, IWCD + PRISM concept	Performant ND complex + PRISM concept

DUNE far site

DUNE near site

USA

T2HK far site T2HK near site Japan

USA

DUNE near site

DUNE far site

T2HK far site T2HK near site Japan

DUNE far site

NB: DUNE'S wideband beam offers more oscillation information in it's spectral shape than shown here.

DUNE near site

T2HK far site T2HK near site Japan

.....

USA

DUNE near site

DUNE far site

T2HK far site II T2HK near site Japan

- Intense neutrino beams and massive far detectors will enable unprecedented statistics → systematics all the more crucial
- Complementarity, much like that of NOvA and T2K, becomes even more powerful
 - Mass ordering from DUNE break degeneracies in T2HK appearance rates
 - Different systematics; extra scrutiny when comparing oscillation results (a great thing!)

DUNE far site

DUNE near site

- If **B** NSI, would manifest in the signals differently due to very different baselines
- Different sensitivities to different oscillation parameters can be leveraged in joint analysis
- Highly complementary physics programs outside of 3-flavor oscillations as well K. Wood - Snowmass 2022 NF Early Career Session

Closing

- In the precision era of LBL accelerator **v** oscillation experiments, firm understanding of systematics (incl. e.g. NSI) will be all the more crucial
 - Multiple, complementary experiments helps
 - Current generation of experiments offers a great testbed
- Listening to our colleagues on the theoretical/phenomonological side about how to best communicate results from our data

Backup

Accelerator Neutrino Fluxes

K. Mahn, C. Marshall, & C. Wilkinson, Progress in Measurements of 0.1–10 GeV Neutrino–Nucleus Scattering and Anticipated Results from Future Experiments. Annual Review of Nuclear and Particle Science 68:1, 105-129 (2018).

$\delta_{\rm CP}$ results marginalized over hierarchy

@ Neutrino 2022

NOTE: Different convention for δ_{CP} range (which is 2π periodic)

