Physics at the MeV-Scale in Neutrino LArTPCs

Will Foreman Illinois Institute of Technology

Snowmass Community Summer Study University of Washington, Seattle July 24, 2022

Liquid argon time projection chambers

LArIAT Data

MeV-scale activity from de-excitation γ's and neutrons

Energy scales in LArTPCs

- Most neutrino reconstruction tools tailored for higher-energy, GeV-scale tracks and EM showers found in v-Ar final-states
- But LArTPCs are sensitive to sub-MeV-scale physics too!

Low-Energy Physics in Liquid Argon (LEPLAr)

- Snowmass workshop held in 2020
 - Identify opportunities for DUNE in the <100 MeV regime
 - Develop standard set of signal/background assumptions
 - Exchange ideas between DUNE technical working groups

7 24 July 2022

Reconstruction in a nut-shell

- Signals time-matched between wire readout planes
 - Wire intersections \rightarrow YZ coordinate
- Easy with extended (multi-hit) signals
- More challenging at lower energy
 - Hit-finding thresholds
 - Noise hits create ambiguous fake matches
- Standardized toolset/algorithms under development for broad LArTPC use

Demonstrations of MeV-scale signal sensitivity

W. Foreman | Snowmass CSS

ILLINOIS INSTITUTE

OF TECHNOLOGY

See talk by Thiago right after this

W. Foreman | Snowmass CSS

ILLINOIS INSTITUTE

OF TECHNOLOGY

Simulation studies

Generic 'DUNE-like' MC used to explore some of these benefits

Supernovae neutrinos

- 50% more v energy recovered when including isolated blips
- **Channel ID capabilities**
- Tagging neutron-producing evts
 - Recover 7.8 MeV of lost v energy (n-separation energy in K⁴⁰)

30

True Neutrino Energy (MeV)

40

Phys Rev D 102, 092010 / arXiv:2006.14675

OF TECHNOLOGY

[Submitted on 25 Jun 2020]

Benefits of MeV-Scale Reconstruction Capabilities in Large Liquid Argon Time Projection Chambers

W. Castiglioni, W. Foreman, I. Lepetic, B. R. Littlejohn, M. Malaker, A. Mastbaum

10

20

60

50

40

30

20

New Reconstructed Energy (MeV)

Simulation studies

n

Summary

- MeV-scale reconstruction is the 'next frontier' in neutrino LArTPC physics!
- The <u>LEPLAr Snowmass White</u> <u>Paper</u> presents a broad and detailed overview of the applications and challenges ahead
 - Much more than I could include in this talk

Thank you!

Backup

Related references

<u>Study of reconstructed 39Ar Beta Decays at the MicroBooNE Detector</u>

Snowmass contributions:

- Low-Energy Electron-Track Imaging for a Liquid-Argon Time-Projection Chamber using Probabilistic Deep Learning (poster), Micah Buuck et. al., <u>arXiv:2207.07805</u>
- Improving LArTPC Performance with Photo-Ionizing Dopants, Joseph Zennamo
- Low-Energy Physics Opportunities with DUNE, Daniel Pershey
- <u>DUNE-Beta: Searching for Neutrinoless Double Beta Decay with a Large LArTPC</u> (LOI), Joseph Zennamo, Fernanda Psihas, Andy Mastbaum
- LArTPC Pixelated Readout, Brooke Russel

Photo-ionizing dopants in LAr for improved response at low energies

Improving LArTPC Performance with Photo-Ionizing Dopants, Joseph Zennamo

LArTPC example event display

Calculating energy from charge

For *tracks,* we know the length and therefore dQ/dx for each hit.

For *blips*, no spatial extent: we lose that "dx" information!

Calculating energy from charge

- MicroBooNE (<u>arXiv:1704.02927</u>) and LArIAT (<u>arXiv:1909.07920</u>)
 - Analyses of Michel electron showers
 - For blips, assumed constant dE/dx (i.e., constant recombination)
- ArgoNeuT (<u>arXiv:1810.06502</u>)
 - Nuclear de-excitation γ analysis
 - Used NIST data on low-E electrons, together with recombination, to directly relate measured Q to energy

Ar39 contamination in a large LArTPC

- Produced from cosmic ray exposure, present at 1 Bq/kg
- β decay, Q value of 0.565 MeV
- Randomly distributed background of blips

Simulated decays in a DUNE-sized drift region (2.2ms data acquisition window).

For randomly-selected point in fiducialized active volume, using 75 keV blip threshold, contribution from Ar³⁹ in 30cm sphere:

- Energy ~ 0.08 MeV
- Energy RMS spread ~ 0.15 MeV

N_{blips} ~ 0.3

Effect of electronic noise

FIG. 20. The resolution of the full-energy peak for simulated 1.46 MeV γ -rays, over a range of different blip smearing levels, for both 75 keV and 150 keV energy thresholds. A proximity requirement of 30 cm is used. Resolution is calculated based on the FWHM of the peak using the relationship to standard deviation: $\sigma = FWHM/(2\sqrt{2 \ln 2})$.

Final-state neutron ID and calorimetry

Adding up "blips" within 60 cm of neutron production point...

ILLINOIS INSTITU

OF TECHNOLOGY

Final-state neutron ID and calorimetry

Adding up "blips" within 60 cm of neutron production point...

W. Foreman | Snowmass CSS

ILLINOIS INSTITUT

OF TECHNOLOGY