

Low Energy Physics Program of DUNE

Thiago Bezerra, for the DUNE Collaboration University of Sussex

Seattle Snowmass Summer Meeting 2022 Neutrino Physics Frontier: New Opportunities in Neutrinos

24/JUL/2022

Deep Underground Neutrino Experiment

- Next generation flagship neutrino experiment
 - High intensity neutrino beam
 - Long baseline, with on-axis detector
 - Multiple complementary near detectors

Deep Underground Neutrino Experiment

- Next generation flagship neutrino experiment
 - High intensity neutrino beam
 - Long baseline, with on-axis detector
 - Multiple complementary near detectors

- Aims at fundamental questions:
 - Neutrino oscillations
 - Nucleon decay
 - Core collapse supernova

DUNE Far Detectors

- Four modules (17 kt each)
 - Module 1, 2 & 3: Liquid Argon TPC
 - Module 4: Opportunity Module!
- DUNE Phase I:
 - Module 1: 3.6 m horizontal drift (wires anode) + light detectors
 - Module 2: 6.5 m vertical drift (PCB anode) + light detectors

[°] dE/dx, range, event topology

Low Energy interactions in LAr

- DUNE FDs are sensitive to Solar and core-collapse supernovae (5 < E < 50 MeV)
- Charged-current (CC) interactions on Ar
 - $v_e + {}^{40}\text{Ar} \rightarrow {}^{40}\text{K}^* + e^-$ (dominant)
 - $\overline{\nu}_e$ + ⁴⁰Ar \rightarrow ⁴⁰Cl* + e⁺
- Elastic scattering on electron
 - ν_x + e⁻ \rightarrow ν_x + e⁻
- Neutral current (NC) interactions on Ar
 - $\nu_{\rm X} + {}^{40}{\rm Ar} \rightarrow \nu_{\rm X} + {}^{40}{\rm Ar}^*$
- Possible to discriminate interaction by classification of photons from K, Cl or Ar deexcitation (CC and NC) or by the absence of photons (ES)

24/JUL/2022

Low Energy Reconstruction

- Huge source of neutrinos of all flavours
 - ~ 10 sec burst
 - 1~3 per century in our galaxy

Fermilab animation

Thiago Bezerra

- Huge source of neutrinos of all flavours
 - ~ 10 sec burst

US

- 1~3 per century in our galaxy

- SN1987A
 - Kamiokande
 - IMB
 - Baksan

Fermilab

animation

Thiago Bezerra

- Huge source of neutrinos of all flavours
 - ~ 10 sec burst

- 1~3 per century in our galaxy
- Measurement provides:
 - Supernova physics
 - Collapse mechanism
 - Time evolution
 - Black hole formation

- SN1987A
 - Kamiokande
 - IMB
 - Baksan

Fermilab

animation

- Huge source of neutrinos of all flavours
 - ~ 10 sec burst

- 1~3 per century in our galaxy
- Measurement provides:
 - Supernova physics
 - Collapse mechanism
 - Time evolution
 - Black hole formation
 - Neutrino physics
 - Oscillation
 - Absolute mass

– Baksan

Kamiokande

SN1987A

Expected signal in DUNE

142

1047

EPJC 81 (2021) 423

24/JUL/2022

 $\nu_X + e^- \rightarrow \nu_X + e^-$

Total

US UNIVERSITY OF SUSSEX

Thiago Bezerra

8 / 23

50

40

45

Expected signal in DUNE

Online monitoring of raw waveforms

Online monitoring of raw waveforms

• Online monitoring of raw waveforms

• Hits clustering

UNIVERSITY OF SUSSEX

11 / 23

• Hits clustering → Selection efficiency

• Radiologicals determine the *fake trigger* rate

DEEP UNDERGROUND NEUTRINO EXPERIMENT

• Radiologicals determine the *fake trigger* rate

Hit rate (per anode)

• Radiologicals determine the *fake trigger* rate

4 hits-cluster rate (per 10 kt)

13 / 23

- Radiologicals determine the *fake trigger* rate
 - Clusters in a 10 seconds window:

Triggering Efficiency

• SNB triggering efficiency (for 11.2 M_{\odot} with Hudepohl model and 10 kt)

Triggering Efficiency

• SNB triggering efficiency (for 11.2 M_{\odot} with Hudepohl model and 10 kt)

Triggering Improvements I

- Triggering improvement with shape info
 - Shape -> charge of clusters

Triggering Improvements I

- Triggering improvement with shape info
 - Shape -> charge of clusters

24/JUL/2022

US

Thiago Bezerra

16 / 23

- Triggering improvement with shape info
 - Shape -> charge of clusters

 Triggering with <u>photon detectors</u> also feasible

Induction wires

US

OF SUSSE

- For Region of Interest triggering
 - Reduced data-rates
- More TPC hits available \rightarrow better efficiencies
- Online conversion to unipolar pulse:

Supernova v Burst Physics

- Sensitivity to neutronization phase
- Possibility to determine the mass ordering
- Neutrino mixing from detected spectrum
- Also sterile-v; self-interactions, absolute v mass, etc.
- Stellar evolution

US

- Explosion mechanisms
- Black hole formation

Solar-v

- DUNE sensitive to **B** and **hep** fluxes
 - ⁸B to measure oscillation parameters
 - hep flux has not been observed yet

Solar-v

- DUNE sensitive to **B** and **hep** fluxes
 - ⁸B to measure oscillation parameters
 - hep flux has not been observed yet
- CC as dominant channel
- Tracks and gamma cascade (TPC) + light

24/JUL/2022

Solar-v

- DUNE sensitive to **B** and **hep** fluxes
 - B to measure oscillation parameters
 - hep flux has not been observed yet
- CC as dominant channel
- Tracks and gamma cascade (TPC) + light
- Triggering threshold \rightarrow large bkg rate at several MeV's

How large backgrounds?

• CNO flux "buried" by ~1000 factor

How large backgrounds?

- CNO flux "buried" by ~1000 factor
 - Possible ideas to overcame this challenge exists (4th module?)
 - A. Avasthi et al., <u>arXiv:2203.08821</u>

Sensitivity to solar oscillations

- Favourable sensitivity for measuring Δm_{21}^2 from day/night effect
- May push current tension between SK/SNO and KamLAND to 5σ

Summary

- Beyond precision measurement of neutrino oscillation, DUNE will provide large datasets of **astrophysical** neutrinos
- Argon detectors uniquely sensitive to $v_{\rm e}$ flux
- Large mass and excellent tracking
- Huge physics potential in the early running: discovering of hep solar neutrino flux and 100-1000's events from any galactic supernova with just one FD module (before arrival of the first beam pulse!)

The DUNE Collaboration

Thank you for listening!

