Low Energy Physics Program of DUNE

Thiago Bezerra, for the DUNE Collaboration
University of Sussex

Seattle Snowmass Summer Meeting 2022
Neutrino Physics Frontier: New Opportunities in Neutrinos

24/JUL/2022
Deep Underground Neutrino Experiment

- Next generation flagship neutrino experiment
 - High intensity neutrino beam
 - Long baseline, with on-axis detector
 - Multiple complementary near detectors
Deep Underground Neutrino Experiment

- Next generation flagship neutrino experiment
 - High intensity neutrino beam
 - Long baseline, with on-axis detector
 - Multiple complementary near detectors

- Aims at fundamental questions:
 - Neutrino oscillations
 - Nucleon decay
 - Core collapse supernova
DUNE Far Detectors

- Four modules (17 kt each)
 - Module 1, 2 & 3: Liquid Argon TPC
 - Module 4: Opportunity Module!

- DUNE Phase I:
 - Module 1: 3.6 m horizontal drift (wires anode) + light detectors
 - Module 2: 6.5 m vertical drift (PCB anode) + light detectors
Liquid Argon TPCs
Liquid Argon TPCs

- Excellent 3D imaging
 - few mm scale over large volume detector
Liquid Argon TPCs

- Excellent 3D imaging
 - few mm scale over large volume detector
- Excellent energy measurement capability
 - totally active calorimeter
Liquid Argon TPCs

- Excellent 3D imaging
 - few mm scale over large volume detector

- Excellent energy measurement capability
 - totally active calorimeter

- Powerful particle ID
 - dE/dx, range, event topology
Low Energy interactions in LAr

- DUNE FDs are sensitive to Solar and core-collapse supernovae (5 < E < 50 MeV)
- Charged-current (CC) interactions on Ar
 - $\nu_e + ^{40}\text{Ar} \rightarrow ^{40}\text{K}^* + e^-$ (dominant)
 - $\bar{\nu}_e + ^{40}\text{Ar} \rightarrow ^{40}\text{Cl}^* + e^+$
- Elastic scattering on electron
 - $\nu_x + e^- \rightarrow \nu_x + e^-$
- Neutral current (NC) interactions on Ar
 - $\nu_x + ^{40}\text{Ar} \rightarrow \nu_x + ^{40}\text{Ar}^*$
- Possible to discriminate interaction by classification of photons from K, Cl or Ar deexcitation (CC and NC) or by the absence of photons (ES)
Low Energy Reconstruction

\(\nu^{-} \) ES event (10.25 MeV \(\nu^{-} \))

\(\nu_{e} \) CC event (20.25 MeV \(\nu_{e} \))

- Cheated space points
- Electrons
- Gammas
- Neutrons
- Protons
- Nuclei
- Positrons

Vertex

30 cm
Core-Collapse Supernova

- Huge source of neutrinos of all flavours
 - ~ 10 sec burst
 - 1~3 per century in our galaxy
Core-Collapse Supernova

- Huge source of neutrinos of all flavours
 - ~ 10 sec burst
 - 1~3 per century in our galaxy

- SN1987A
 - Kamiokande
 - IMB
 - Baksan
Core-Collapse Supernova

- Huge source of neutrinos of all flavours
 - ~ 10 sec burst
 - 1~3 per century in our galaxy

- Measurement provides:
 - Supernova physics
 - Collapse mechanism
 - Time evolution
 - Black hole formation

- SN1987A
 - Kamiokande
 - IMB
 - Baksan
Core-Collapse Supernova

- Huge source of neutrinos of all flavours
 - ~ 10 sec burst
 - 1~3 per century in our galaxy

- Measurement provides:
 - Supernova physics
 - Collapse mechanism
 - Time evolution
 - Black hole formation
 - Neutrino physics
 - Oscillation
 - Absolute mass

- SN1987A
 - Kamiokande
 - IMB
 - Baksan
Expected signal in DUNE

- 40 kt LAr
- 10 kpc SN

\[\nu_e + ^{40}\text{Ar} \rightarrow e^- + ^{40}\text{K}^* \]
\[\bar{\nu}_e + ^{40}\text{Ar} \rightarrow e^+ + ^{40}\text{Cl}^* \]
\[\nu_X + e^- \rightarrow \nu_X + e^- \]

Total \quad 1047

EPJC 81 (2021) 423
Expected signal in DUNE

Galaxy Edge LMC Andromeda

Number of interactions

Distance to supernova (kpc)

40 kton	10 kton

\(\sigma(1000) \)

\(\sigma(100) \)

Garching
Supernova ν Burst Triggering

- Online monitoring of raw waveforms

One TPC channel example
Supernova ν Burst Triggering

- Online monitoring of raw waveforms

![Diagram showing an example of a TPC channel with a peak labeled as 'a Hit'].

One TPC channel example
Supernova ν Burst Triggering

- Online monitoring of raw waveforms
Supernova ν Burst Triggering

- Hits clustering
Supernova ν Burst Triggering

- Hits clustering \rightarrow Selection efficiency
Radiologicals determine the **fake trigger** rate
Radiologicals

- Radiologicals determine the **fake trigger** rate

Hit rate (per anode)

DUNE Work in Progress
Radiologicals

- Radiologicals determine the **fake trigger** rate

Hit rate (per anode)

DUNE Work in Progress

Noise

Ar/39_Lar

Ar42_Lar

K42_Lar

Kr85_Lar

Rn222_Lar

K40_CPA

K42_CPA

U238_CPA

Co60_APA

U238_APA

Rn222_PDS

Neutron

4 hits-cluster rate (per 10 kt)

DUNE Work in Progress

Ar Volume

Cathode

Photon Detectors

Anode

Rock Neutrons

Drifted from Ar
Radiologicals

- Radiologicals determine the **fake trigger** rate
 - Clusters in a 10 seconds window:

\[
\text{N clusters cut} \quad \begin{array}{c}
\begin{array}{c}
10^{-10} \\
10^{-9} \\
10^{-8} \\
10^{-7} \\
10^{-6} \\
10^{-5} \\
10^{-4} \\
10^{-3} \\
10^{-2} \\
10^{-1} \\
1 \\
10 \\
100 \end{array}
\end{array}
\]

- DUNE Work in Progress
 - (~1 per Month)
 - ~13 Clusters
Triggering Efficiency

- SNB triggering efficiency (for 11.2 M☉ with Hudepohl model and 10 kt)
SNB triggering efficiency (for 11.2 M☉ with Hudepohl model and 10 kt)
• Triggering improvement with shape info
 - Shape -> charge of clusters
Triggering improvements

- Triggering improvement with shape info
 - Shape -> charge of clusters
Triggering Improvements

- Triggering improvement with shape info
 - Shape -> charge of clusters

- Triggering with photon detectors also feasible
 - Gives T_0 of trigger (~ns)
• Induction wires
 – For Region of Interest triggering
 • Reduced data-rates
 – More TPC hits available → better efficiencies
• Online conversion to unipolar pulse:

DUNE Work in Progress

K. Wawrowska (Sussex)
• Sensitivity to neutronization phase
• Possibility to determine the mass ordering
• Neutrino mixing from detected spectrum
• Also sterile-ν; self-interactions, absolute ν mass, etc.
• Stellar evolution
• Explosion mechanisms
• Black hole formation
• DUNE sensitive to 8B and hep fluxes
 – 8B to measure oscillation parameters
 – hep flux has not been observed yet
- DUNE sensitive to 8B and hep fluxes
 - 8B to measure oscillation parameters
 - hep flux has not been observed yet
- CC as dominant channel
- Tracks and gamma cascade (TPC) + light
Solar-ν

- DUNE sensitive to 8B and hep fluxes
 - 8B to measure oscillation parameters
 - hep flux has not been observed yet
- CC as dominant channel
- Tracks and gamma cascade (TPC) + light
- Triggering threshold → large bkg rate at several MeV's
How large backgrounds?

- CNO flux "buried" by ~1000 factor
How large backgrounds?

- CNO flux “buried” by ~1000 factor
 - Possible ideas to overcome this challenge exist (4th module?)
 - A. Avasthi et al., arXiv:2203.08821
Sensitivity to solar oscillations

- Favourable sensitivity for measuring Δm^2_{21} from day/night effect
- May push current tension between SK/SNO and KamLAND to 5σ

Capozzi et al., PRL 123 131803
Summary

- Beyond precision measurement of neutrino oscillation, DUNE will provide large datasets of **astrophysical** neutrinos
- Argon detectors uniquely sensitive to ν_e flux
- **Large** mass and **excellent** tracking
- Huge physics potential in the early running: discovering of hep solar neutrino flux and **100-1000’s events** from any galactic supernova with just **one** FD module (before arrival of the first beam pulse!)
The DUNE Collaboration

Thank you for listening!