Water-based Liquid Scintillator

Minfang Yeh Neutrino and Nuclear Chemistry

Snowmass Community Summer Study, UW-Seattle, 07/17-26/2022

@BrookhavenLab

BNL Neutrino and Nuclear Chemistry Since 1960 (career in chemistry & physics)

b

Liquid Scintillator v Map (Yeh)

LZ (Gd-doped LS)

SURFEISA

If you always do what you always díd, you will always get what you always got. -Albert Einstein 180 Next liquid scintillator detector 160 (m)Cherenkov (ex. Super-K, SNO) development \rightarrow *directionality* Length 140 H20 1%WbLS 10%WbLS LS 120 Absorption 100 Water-based Liquid Scintillator Cherenkov 80 Oil-like WbLS water-like WbLS LiquidO: stochastic light 60 Cherenkov and Metal-loaded LS confinement; lossless scattering Scintillation detection (ex. **PROSPECT**) (ex. AIT/NEO) Mean 40 Water-based Liquid Scintillator: 20 Cherenkov and scintillation Scintillator (ex. SNO+, Daya Bay) detection 0 1000 10000 100 **Photon/MeV** Brookhaven National Laboratory

- Slow Scintillator: timing separation of slow(er) scintillation from fast

Water-based Liquid Scintillator

- a novel low-energy detection medium, bridging scintillator and water, to explore physics below Cherenkov threshold
- tunable scintillation light from ~pure water to ~organic.
- environmentally friendly and noncombustible for underground physics.
- a directional scintillator detector capable of high-energy (Cherenkov) and low-energy (scintillation) detections
- viable to load a variety of metallic isotopes for varied physics applications
- ANNIE, WATCHMAN, THEIA25/100

5

Principle proven with characterizations Scintillator Yield, Č/S Separation, Timing Structure, optical (absorption and scattering),...,etc.

<i>f</i> ₁ [%]	τ_2 [ns]	<i>f</i> ₂ [%]	τ_3 [ns]	<i>f</i> ₃ [%]
61	$16. \pm 1.$	34	80 ± 5	4.4
72	13.7 ± 0.9	25	84 ± 2	3.7
82	13.4 ± 0.8	15	86 ± 1	3.7
84	13.4 ± 0.9	12	83 ± 2	4.0
84	13.0 ± 0.8	12	80 ± 2	4.4
77	11.2 ± 0.4	18	72 ± 2	5.1
55	9.9 ± 0.5	38	64 ± 4	7.0
38	10.5 ± 0.4	55	69 ± 4	7.1
35	11.1 ± 0.1	58	72 ± 3	7.4

<i>f</i> ₁ [%]	τ_2 [ns]	<i>f</i> ₂ [%]	τ_3 [ns]	f ₃ [%]
87	12 ± 1	6.8	110 ± 10	6.2
88	10.0 ± 0.6	6.6	106 ± 6	5.7
89	10.7 ± 0.9	6.0	102 ± 9	5.5

• Principal demonstrated in laboratory environment; characterization and analysis tools, developed over the past years WbLS-rhttps://orcid.org/0000-0003-2244-**0499**elated pubs:

scintillators, Eur. Phys. J. C (2017) 77:811.

6

BNL Scintillator Research

- LS research laboratories with state-or-art equipment
 - Bench top R&Ds and mid-scale (10-100 liter) study
 - **Host students and collaborators >5 per year**
- Ton-scale liquid scintillator production facility (commissioned in FY19; user cases \rightarrow PROSPECT and LZ)
- 1-ton Testbed (1TBNL, commissioned in FY22)
- commission in FY23)

2016 2017 2018 2019 2020 2021 2022 2023

Advancing WbLS/THEIA-related R&Ds...

(a) The neutron/gamma PSD performance of a sample of WbLS with 33 wt% oil phase as a function of energy. This sample was exposed to ²⁵²Cf source. Here clear separation of nuclear and electronic recoils can be absorved

Electronic Recoils

200 300 400 500 600 Approx Energy [keV

Ton-scale facility serve collaborative R&D activities

4-ton Eos

Research, Operation, and Progress

- Complete WbLS mixing and deployment in ONE step within the detector vessel
 - In-situ sequential mixing scheme
 - Direct injection of scintillator materials into water ●
 - *Remove on-site complications to save labor & space* lacksquare
 - Proven at 100-liter scale; ready for prototyping tests
- In-situ circulation/purification system
 - Nanofiltration system separates oil from water and sends each to purification
 - Benchtop test successfully demonstrates >95% (~ppm) efficacy; ready for prototyping tests
- Li, Gd doping in WbLS successfully developed
 - PROSPECT, WATCHMAN
 - 30% W for calorimetry?
- Low material cost; affordable for 10s kton detectors:
 - 10-ton materials (\$4k per ton) for a 1000-ton detector (99% water)

Brookhaven National Laboratory

PROSPECT (ORNL) Li-doped LS

Summary

- WbLS is a new scintillation material along with advanced detector instrumentation, such as dichroicon, nanofiltration, LAPPD..., etc., building for next-generation experiments (flexible doping allowing a phased program, i.e. THEIA)
 - *Scintillation* provides the energy resolution necessary to get above most radioactive backgrounds and the ability to see slow-moving recoils
 - *Cherenkov* enables event direction reconstruction and background discrimination at low energies Capable of metal doping or enrichment to enhance interaction rate
- WbLS R&D is advancing with several ton-scale deployments
 - principle and stability (>years) proven at benchtop; well characterized
 - 1TBNL, ANNIE in 2022
 - 4TEos, 30TBNL in 2023/24
 - Production facility readiness for large-scale manufacture in 2023
- Snowmass: WbLS-related whitepapers and presentations to different frontiers
- Planning new initials in T2K/ND:SuperFGD, LiquidO, dark matter veto (G3), medical physics

