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High-performance,	low-cost	Si	detectors
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• Large area (10 cm diameter)
• Thick (2.5 mm)
• < 4 keV energy resolution
• High temperature (-35 C)
• Low power (250 V bias)
• Low cost (~$500 materials)
• High fabrication yield (~90%)
• >1000 detectors for GAPS



GAPS:	New	physics	in	cosmic	antideuterons
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A generic new physics 
signature with essentially 

zero conventional 
astrophysical 
background
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+ precision antiproton 
spectrum in unexplored 
low-energy range

+ unprecedented 
sensitivity to antihelium

First Antarctic balloon 
flight late 2023

dark matter  𝒅 signal

astrophysical 𝑑 background

AMS-02 energy rangeprecision low-
energy 𝑝 spectrum

von Doetinchem, Perez, et al. (arXiv:2002.04163 , JCAP 2020)



Si(Li)	detectors	are	key	to	GAPS	science	goals
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Field Rogers 
(NSF grad fellow)

Dr. Mengjiao Xiao
(Research 
Scientist)

Brandon Roach
(grad student)

The MIT Si(Li) crew

>1000	Si(Li)	detectors
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Ian Bouche 
(researcher)

Kelsey Yee
(NSF grad fellow)

Available for faculty! Available for postdoc! 



The	GAPS	Si(Li)	Team
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Novel	detection	of	low-energy	cosmic	antinuclei

Illustration credit: 
A. Lowell (UCSD)

Plastic 
scintillator 
TOF

10 planes 
of Si(Li) 

detectors

Extoic atom technique verified at KEK: Aramaki+ Astropart.Phys. 49, 52-62 (2013) 
GAPS sensitivity to antideuterons: Aramaki+ Astropart.Phys. 74, 6 (2016) 
GAPS sensitivity to  antiprotons: Aramaki+ Astropart.Phys. 59, 12-17 (2014)
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Time-of-flight system 
measures velocity and dE/dx

Si(Li) tracker acts as:
• target to slow and capture 

an incoming antiparticle



Novel	detection	of	low-energy	cosmic	antinuclei

Extoic atom technique verified at KEK: Aramaki+ Astropart.Phys. 49, 52-62 (2013) 
GAPS sensitivity to antideuterons: Aramaki+ Astropart.Phys. 74, 6 (2016) 
GAPS sensitivity to  antiprotons: Aramaki+ Astropart.Phys. 59, 12-17 (2014)

Illustration credit: 
A. Lowell (UCSD)
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Time-of-flight system 
measures velocity and dE/dx

Si(Li) tracker acts as:
• target to slow and capture 

an incoming antiparticle into 
an exotic atom



Novel	detection	of	low-energy	cosmic	antinuclei

Extoic atom technique verified at KEK: Aramaki+ Astropart.Phys. 49, 52-62 (2013) 
GAPS sensitivity to antideuterons: Aramaki+ Astropart.Phys. 74, 6 (2016) 
GAPS sensitivity to  antiprotons: Aramaki+ Astropart.Phys. 59, 12-17 (2014)

Illustration credit: 
A. Lowell (UCSD)
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Time-of-flight system 
measures velocity and dE/dx

Si(Li) tracker acts as:
• target to slow and capture 

an incoming antiparticle into 
an exotic atom

• X-ray spectrometer to 
measure the decay X-rays



Novel	detection	of	low-energy	cosmic	antinuclei

Time-of-flight system 
measures velocity and dE/dx

Si(Li) tracker acts as:
• target to slow and capture 

an incoming antiparticle into 
an exotic atom

• X-ray spectrometer to 
measure the decay X-rays

• particle tracker to measure 
the resulting dE/dX, 
stopping depth, and 
annihilation products

Extoic atom technique verified at KEK: Aramaki+ Astropart.Phys. 49, 52-62 (2013) 
GAPS sensitivity to antideuterons: Aramaki+ Astropart.Phys. 74, 6 (2016) 
GAPS sensitivity to  antiprotons: Aramaki+ Astropart.Phys. 59, 12-17 (2014)

Illustration credit: 
A. Lowell (UCSD)
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Image credit: NASA

On	a	balloon!
GAPS’ balloon nature constrains power, 
weight, size, temperature... 

Key challenges:
• High operating temperature: 

-35 to -45C
• Power limited by long-duration flight
• Large area, but low leakage current
• Need to develop low-cost, 

high-yield fabrication process
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Why Si(Li) Detectors?

ATLAS Si pixel module 

~2
 c

m

~6 cm

• ~46k channels
• ~50 x 400 μm pixel size
• 250 μm thick

ü spatial resolution ~10-100 µm

GAPS Si(Li) detector

~10 cm

• 8 channels per detector
• ~2.5 cm wide strip
• 2.5 mm thick

ü tracking efficiency in low-multiplicity events
ü stopping power up to 0.25 GeV/n
ü energy resolution < 4 keV to distinguish X-rays
ü active area totaling ~10 m2



Doped	materials	used	to	make	detectors
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B

P-type doping:
Free positive hole
(Fixed negative ion)

P

N-type doping:
Free electron
(Fixed positive ion)

Image credit: Wikipedia commons



Lithium-drifted detector fabrication
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Custom-developed 
by SUMCO for GAPS

Step 1: 
Boron-doped Si

101 mm

2.5 mmp-type Si 
p-type free hole,

fixed negative ion

See e.g. F.S.  Goulding  
“Semiiconducting Detectors for 
Nuclear Spectroscopy” (1963)



Lithium-drifted detector fabrication
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Custom-developed 
by SUMCO for GAPS

Step 1: 
Boron-doped Si

101 mm

2.5 mmp-type Si 
p-type

p-type Si
n+-layer

electrode

p-type

Li easily ionized in Si
à free electron (n-type layer)
High mobility in Si 
à mobile positive Li ion

free hole,
fixed negative ion

Step 2: 
Evaporate and 
diffuse Li 

See e.g. F.S.  Goulding  
“Semiiconducting Detectors for 
Nuclear Spectroscopy” (1963)



Lithium-drifted detector fabrication
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Custom-developed 
by SUMCO for GAPS

Step 1: 
Boron-doped Si

101 mm

2.5 mmp-type Si 
p-type

p-type Si
n+-layer

electrode

p-type

E

p-type layer

n+-layer
electrode

2.3 mm 
compensated

• 100°C
• 600 V bias
• ~4 days 

Step 2: 
Evaporate and 
diffuse Li 

Step 3: Drift! Mobile Li+ ions 
compensate impurities in 
B-doped Si, creating 
extended charge-free 
regions

Li easily ionized in Si
à free electron (n-type layer)
High mobility in Si 
à mobile positive Li ion

free hole,
fixed negative ion

See e.g. F.S.  Goulding  
“Semiiconducting Detectors for 
Nuclear Spectroscopy” (1963)



Lithium-drifted detector fabrication
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Custom-developed 
by SUMCO for GAPS

Step 1: 
Boron-doped Si

101 mm

2.5 mmp-type Si 
p-type

p-type Si
n+-layer

electrode

p-type

E

p-type layer

n+-layer
electrode

2.3 mm 
compensated

• 100°C
• 600 V bias
• ~4 days 

Step 2: 
Evaporate and 
diffuse Li 

Step 3: Drift! Mobile Li+ ions 
compensate impurities in 
B-doped Si, creating 
extended charge-free 
regions

Cross-section 
(copper stained)

Li easily ionized in Si
à free electron (n-type layer)
High mobility in Si 
à mobile positive Li ion

free hole,
fixed negative ion

See e.g. F.S.  Goulding  
“Semiiconducting Detectors for 
Nuclear Spectroscopy” (1963)
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“It would be no exaggeration to say that the least understood and most time-
consuming aspect of semiconductor devices is the behavior of the region where a 
junction intersects the surface of the crystal.” – F.S. Goulding (1963)

(1) Guard ring structure prevents surface 
leakage current from entering readout 
circuit e.g. Goulding NIM 12 249-262 (1962)

(2) Chemical etching of grooves
• Removes surface impurities
• Smooths surface
• Sets proper surface state (lightly n-type)

(3) Novel passivation necessary to preserve surface 
state, protect from environmental degradation

Kozai, Fuke, Yamada, Perez+ NIMA (2019)

Saffold, Rogers, Xiao+ 
(2020) NIM A 



Rapid,	successful	development	of	flight	detectors
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In-house prototype Si(Li) detectors: 
5-cm diameter, 1-1.75 mm thick

Total cost ~few hundred dollars in materials

Perez+ NIM A905 12-21 (2018)



Rapid,	successful	development	of	flight	detectors
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• Small diameter < 1 cm
• Low operation temperature (Liquid nitrogen temperature)

In-house prototype Si(Li) detectors: 
5-cm diameter, 1-1.75 mm thick

Total cost ~few hundred dollars in materials

Perez+ NIM A905 12-21 (2018)



Commercial 
products:
~10 mm 
diameter 
~3 mm thick

Rapid,	successful	development	of	flight	detectors

20

2015

2016 10 cm-diameter, 2.5 mm-thick

10 cm wafer diameter, 
2.5 mm thick

5 cm diameter, 
2.5 mm thick

Flight production completed! 
2018-2020

Kozai, Fuke, Yamada, Perez+  NIM (2019)

Future applications: 
Si(Li) for use in heavy nuclei ID 
at NSCL/FRIB

In-house prototype Si(Li) detectors: 
5-cm diameter, 1-1.75 mm thick

Total cost ~few hundred dollars in materials

Perez+ NIM A905 12-21 (2018)

Saffold, Rogers, Xiao+ NIM (2020)



Achieved	< 3	keV energy	resolution	at	-40	C!	

Field Rogers 
(NSF grad fellow)

Rogers, Xiao, Perez, et al. 
JINST 14, 10 (2019)

Rogers, Xiao, Perez, et al. 
Proc. IEE NSS (2019).

<10% energy 
resolution for 

ionizing particles

↑ Noise model allows to predict 
resolution in-flight, with new generations 
of readout, varying temperature
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Completed!	Characterization	of	>1000	detectors
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Calibration facility at MIT

beautiful 
X-ray 
spectrum!

Duplicate, parallel 
facility at UHawaii

M. Xiao, Stoessel, Roach, 
Gerrity+ (2022) in prep.



Initial	Antarctic	GAPS	flight	in	late	2023!
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• Large-area Si(Li) detectors 
developed to meet the 
unique temperature, 
power, cost constraints of 
the GAPS Antarctic 
balloon experiment

• Experiment integration 
well underway!

• Return to R&D will allow 
improvements, custom 
designs for broader 
applications

GAPS 
System 
tests (Xiao, 
Stoessel+ 
in prep.)

GAPS Collaboration meeting 
(June 2022)



Back	to	the	future:	in-house	fabrication
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