Development of Deep-Junction Low Gain Avalanche Diode for High Granularity Timing Detectors

Snowmass Community Summer Study Workshop, Seattle July 17-26, 2022

> Yuzhan Zhao yuzhao@ucsc.edu

Conventional LGAD and the Granularity Limitation

Low Gain Avalanche Detector

- Low Gain Avalanche (LGAD) is type of silicon based detector that made used of highly doped (p+) layer which provide internal moderate gain of ~ 10 to 50.
- The active thickness can reduce down to 20 to 50um, while the internal gain helps maintain detectable signal.
 - The thin active thickness provides short rise time, less Landau fluctuation.
- Capable to provide timing resolution < 20ps for mip.
- Very Radiation hard
 - survive up to fluence of 6e15 neq/cm2
- Current and proposed application:
 - HGTD for ATLAS upgrade.
 - TOF for the Electron-Ion Collider
 - PIONEER Rare Pion decay experiment
 - Low energy X-ray detection

Granularity Limitation of Conventional LGAD

- Conventional LGAD pixel requires Termination Extension (JTE) structure that prevent premature breakdown between channels
 - The dead area ~ 30-100 um between channels.
 - Granularity is limited to millimeter scale.
- Several promising approaches to increase granularity are proposed and under study:
 - Inversed LGAD
 - AC-LGAD, (SCIPP, UCSC patent)
 - Trench Isolated LGAD aluminum TE n^{++} $gain layer - p^+$ n $epitaxial layer - p^$ $substrate - p^{++}$

Diagram credit:BNL

JTE Structure

Dead area with no gain

New Approach: The Deep Junction LGAD

Deep Junction LGAD Concept

- The term "deep junction" arise from the use of a p-n junction buried several microns below the surface of the device
 - Keep E-field low at surface, allowing conventional pixelization/segmentation
 - Maintains fine granularity and charge uniformity across channels
 - Preserves DC coupling of signal to readout electrodes.
- (Designed by C. Gee, S. Mazza, B. Schumm, Y. Zhao, patent pending)

Two Approaches for Manufacturing Deep Junction

- We are in collaboration with Cactus Materials Inc and BNL to produce DJ-LGAD prototype.
- Two approaches to achieve deep junction:

Wafer-wafer bonding

Etching N substrate deposit electrodes and implants

Gain Layer Implantation Similar to Conventional LGAD, but with higher energy

Epitaxial growth of high resistivity N type layer

Deposit electrodes and implants

TCAD Simulation & Prototype Fabrication

TCAD Simulation of DJ-LGAD

- The idea of DJ-LGAD with epitaxial growth approach is simulated with TCAD.
- Primary goal of DJ-LGAD is to achieve preserve charge uniformity across channels.
 - The E-Field strength across the gain layer is affected by the inter-channel distance.

TCAD Simulation of DJ-LGAD

07/24/22

- The idea of DJ-LGAD with epitaxial growth approach is simulated with TCAD.
- One important goal of DJ-LGAD is to achieve preserve charge uniformity across channels.
 - The collected charge is studied by simulating minimum-ionization particle (mip) injection at different x location across the channels.

Status of Prototype Fabrication

- We work closely with manufacture, and using TCAD studies to provide feedback and guidance on optimizing fabrication parameters, e.g.
 - Implantation energy for gain layer
 - Effects of different anneal temperature
 - Range of epitaxial layer resistivity
- The first prototype led by BNL was produced using epitaxial approach, but the gain layer doping was too high and only depleted the epitaxial and n+ gain layer
 - Optimized implantation dosage was studied and proposed for the 2nd prototype.
- The second prototype fabrication with wafer-wafer bonding approach is in progress.
 - Expect to receive samples for lab testing in late August

Conclusion

Conclusion

- Conventional LGAD pixel arrays have large dead (no gain) region across channels due to the JTE structure.
- We proposed the Deep Junction LGAD design with buried gain layer.
 - High field region is away from the surface, allow conventional pixelization with very fine inter-channel gap.
 - The gain layer is continuously across channels, which increase the charge uniformity across channels.
 - Simulation study on charge uniformity of DJ-LGAD shows ~5% charge reduction across gap region.
- Second prototype fabrication is in progress. New samples are expected to be available for lab testing in August.

Thank You!

Acknowledgment

Funding & Acknowledgment

- This work was support by:
 - The United States Small Business Innovation Research (SBIR) Program.
 - United States Deportment of Energy grant DE-FG02-04ER41286
 - Launchpad Grant awarded by the Industry Alliances & Technology Commercialization office from the University of Calfornia, Santa Cruz

The Deep Junction LGAD Working Group

- Collaborated groups:
 - The Santa Cruz Institute for Particle Physics, UCSC
 - Cactus Material Inc.
 - Brookhaven National Laboratory

Y. Zhao^a, S. Ayyoub^b, W. Chen^c, C. Gee^a, R. Islam^b, S. M. Mazza^a, S. Mony^b, B. A. Schumm^a, A. Seiden^a, G. Giacomini^c

^aThe Santa Cruz Institute for Particle Physics and the University of California, Santa Cruz, California, 95064 ^bCACTUS Materials, Inc., Tempe, Arizona, 85284

^cBrookhaven National Laboratory, Upton, New York, 11973

Backup

Signal Response from Simulated MIP

The signal response from mip injected at two different location is shown. •

Simulation with Very Fine Pitch Segmentation

- Since the critical field region is buried, the surface segmentation/pixelization can be made with very fine pitch and inter-channel distance.
- Simulation with 20um pitch & 3um inter-channel distance also shows good charge uniformity

Electric Field in Epitaxial Layer

- DJ-LGAD operates under full-depletion. The epitaxial layer is also depleted under reverse biasing.
- The field within the epitaxial layer is affected by the resistivity.

Gain vs Bias Voltage for P+ Implant Dosage

- The following plot shows the gain vs bias voltage curve for signal response of the channel where a mip is injected.
- The gain is computed as the collected charge ratio of a DJ-LGAD device to a PiN diode with same geometry and thickness but without gain layer.
- The P+ dosage dependence on gain is studied in simulation as shown in the figure
 - Simulation starts to diverge for dosage > 2.3e12 cm^2. High current occurs before full depletion (and only N+ is depleted).

First Prototype C-V

 Doping concentration for the first DJ-LGAD prototype was extracted through C-V measurement.

- Capacitance gives width of depletion region
- See sharp behavior from epitaxial layer in first few microns of sensor at low voltage, then slower in junction until reaching breakdown
- Can see in doping profile that breakdown occurs before junction fully depletes
- Field is too high and we starting getting hole multiplication, so need to reduce doping
- When we tried increasing temperature, a higher breakdown voltage achieved, which means hole depletion is being suppressed at higher temperatures and we would benefit from a lower doping concentration

Credit: C. Gee Talk on RD50 Nov 2021

8

Alpha Particle Injection with First Prototype

• Alpha particle with ~5MeV energy is injected.

- Mounted DJ-LGAD on read out board to measure sensor pulses on an oscilloscope with Am-241 source
- Vary bias voltage down to -130 V
- Can use positive and negative triggers

Credit: C. Gee Talk on RD50 Nov 2021

Alpha Particle Injection with First Prototype

• Signal response from the injected alpha particle

- Unnormalized (left top) and normalized (left bottom) pulses from non-depleted DJ-LGAD at various reverse bias voltages
- Pulses likely from the pin diode in the top 5 um epitaxial layer
- Pulses observed from pos and neg triggers
- Not particularly fast since sensor isn't depleted

10

Credit: C. Gee Talk on RD50 Nov 2021