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The success of HEP experiments
critically relies on advancements in
physics modelling and computational
techniques, driven by a close dialogue
between large experimental
collaborations and small teams of
event generator authors.

Development, validation, and
long-term support of event generators
requires a vibrant research program at
the interface of theory, experiment,
and computing
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Introduction

White paper brought together all
event generator communities in HEP
for the first time

Need to continue this collaboration
through the creation of a joint
theoretical-experimental-computing
working group cross-cutting through
all experiments
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Why do we need generators?

Precision understanding of Standard
Model

Ability to model BSM processes

Essential role in planning and design
of future experiments

Connects the theory and experimental
community

Modelling non-perturbative effects
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Standardized interfaces and analysis tools

Standardized interfaces:

Reduce unnecessary duplication of effort

Key interfaces:

File formats: LHE and HepMC
”Afterburners” (i.e EvtGen)
LHAPDF and TMDlib

Ultimate goal is to have all experiments rely
on a set of common interfaces. For example,
all events outputs should use HepMC.

Analysis tools

Rivet:

More than 1000 analyses are
currently bundled
Mainly LHC, but includes other
colliders

Nuisance:

Tool for neutrino data/MC
comparisons
Unofficial unified interface to
multiple generator output formats

Data Preservation:

Need to develop ability to preserve analyses reliant on machine-learning

Deserves top-down structural attention in HEP as it profoundly affects the reproducibility and
long-term scientific impact
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Tuning and systematics

Uncertainties from the theory can be classified as arising from:
1 Underlying first-principles SM calculations
2 Allowed range of parameters of a given phenomenological model, ideally constrained

by and derived from a tune to data
3 Choice of phenomenological model

All of the above need to be considered before a claim of discrepancy.

1 and 2 can be controlled to some extent, 3 is harder to quantify

Must be careful when tuning to not violate physics constraints
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Computing Bottlenecks
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Unweighting efficiency

Handling (reducing) negative weights

Efficiently propagating theory
uncertainties (i.e. PDFs, scale
variations, etc.)

Modelling Bose-Einstein correlations,
hadron rescattering, color
reconnections, etc.

Matching / merging schemes have
factorial growth problem

Preliminary GPU implementations
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Computing Bottlenecks
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Computing Bottlenecks
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Computing Bottlenecks
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Role of Machine Learning

NNPDF parton densities

Phase space integration

Matrix element emulation

Differentiable programming for
optimization

Generative networks

See arxiv:2203.07460 for more discussion 0 1 2 3
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Role of Machine Learning

NNPDF parton densities

Phase space integration

Matrix element emulation

Differentiable programming for
optimization

Generative networks

See arxiv:2203.07460 for more discussion
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Role of Machine Learning

NNPDF parton densities

Phase space integration

Matrix element emulation

Differentiable programming for
optimization

Generative networks

See arxiv:2203.07460 for more discussion
160 165 170 175 180 185

mt [GeV]

0.0

1.0

2.0

3.0

4.0

1 σ
d
σ

d
m
t

[G
eV
−

1
]

×10−1

True

Breit-Wigner

Gauss

No MMD

J. Isaacson Event Generators for High-Energy Physics Experiments 7 / 8 Fermilab



Conclusions
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Event Generators are vital for the success of high energy experiments

Event Generators bridge theory, experiment, and computing
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