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Event Generators for High-Energy Physics Experiments

@ The success of HEP experiments

critically relies on advancements in
physics modelling and computational
techniques, driven by a close dialogue
between large experimental
collaborations and small teams of
event generator authors.

Development, validation, and
long-term support of event generators
requires a vibrant research program at
the interface of theory, experiment,
and computing
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Introduction

@ White paper brought together all
event generator communities in HEP
for the first time

@ Need to continue this collaboration
through the creation of a joint
theoretical-experimental-computing
working group cross-cutting through
all experiments

Event
Generators
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Why do we need generators?

Precision understanding of Standard
Model

Ability to model BSM processes

Event

E ial role in planni i
ssential role in planning and design Gens

of future experiments

Connects the theory and experimental
community

@ Modelling non-perturbative effects \ (EEI iﬁa ,
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Standardized interfaces and analysis tools

Analysis tools

Standardized interfaces: @ Rivet:
@ Reduce unnecessary duplication of effort o More than 1000 analyses are
@ Key interfaces: currently bundled

o File formats: LHE and HepMC e Mainly LHC, but includes other

o "Afterburners” (i.e EvtGen) colliders
e LHAPDF and TMDIib @ Nuisance:
@ Ultimate goal is to have all experiments rely e Tool for neutrino data/MC
on a set of common interfaces. For example, comparisons
all events outputs should use HepMC. o Unofficial unified interface to

multiple generator output formats
Data Preservation:

@ Need to develop ability to preserve analyses reliant on machine-learning

@ Deserves top-down structural attention in HEP as it profoundly affects the reproducibility and
long-term scientific impact
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Tuning and systematics

Uncertainties from the theory can be classified as arising from:

© Underlying first-principles SM calculations

@ Allowed range of parameters of a given phenomenological model, ideally constrained
by and derived from a tune to data

© Choice of phenomenological model

All of the above need to be considered before a claim of discrepancy.

1 and 2 can be controlled to some extent, 3 is harder to quantify

Must be careful when tuning to not violate physics constraints
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Computlng Bottlenecks
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Unweighting efficiency
Handling (reducing) negative weights

Efficiently propagating theory
uncertainties (i.e. PDFs, scale
variations, etc.)

Modelling Bose-Einstein correlations,
hadron rescattering, color
reconnections, etc.

Matching / merging schemes have
factorial growth problem

Preliminary GPU implementations
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Computing Bottlenecks

Fraction of positive and negative weighted events
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w>0

sgn(w)
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Efficiently propagating theory
uncertainties (i.e. PDFs, scale
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Modelling Bose-Einstein correlations,
hadron rescattering, color
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Matching / merging schemes have
factorial growth problem

Preliminary GPU implementations
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Computing Bottlenecks
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Role of Machine Learning

14
10 —— Uniform
100 VEGAS
5 — NN
@ NNPDF parton densities E 1071 f=—7
. : k=
@ Phase space integration 7 1072 4
<
@ Matrix element emulation ERUSE
@ Differentiable programming for g 1074 4
. . . =
optimization S s
= 1075 4
@ Generative networks 10-6 ] |
T T T
@ See arxiv:2203.07460 for more discussion 0 1 2 3

J. Isaacson Event Generators for High-Energy Physics Experiments 7/8 2% Fermilab



Role of Machine Learning

@ NNPDF parton densities

@ Phase space integration

@ Matrix element emulation

@ Differentiable programming for
optimization

@ Generative networks

@ See arxiv:2203.07460 for more discussion
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Role of Machine Learning

@ NNPDF parton densities
@ Phase space integration
@ Matrix element emulation

@ Differentiable programming for
optimization

@ Generative networks

@ See arxiv:2203.07460 for more discussion
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Conclusions

Event
Generators

Coall Iﬂﬁ ,

e Event Generators are vital for the success of high energy experiments

o Event Generators bridge theory, experiment, and computing
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