Summary: Uncertainty, Validation, Interpretation of ML
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Science demands more from ML

When studying the universe, we don't just want the facts, we want to
understand why things work the way to do, and not some other way

Similarly demand explanations, not just accurate predictions from ML

Important to validate that patterns learnt from simulations will translate to
data

Technigues emerging to use ML to propagate and mitigate uncertainties
with ML and also quantity uncertainties of ML models themselves



Interpretable ML

What information is the model using??

In simple cases (using high level features), drop an input feature or decorrelate the model
from feature to find feature importance

For unstructured data like images, new
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https://arxiv.org/pdf/2010.11998.pdf
https://arxiv.org/abs/1712.07124
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Construct networks that do not violate theoretical constraints (infrared /
collinear safety for jet images) [EEPS], or are provably monotonic w.r.t. some
feature [2112.00038]



https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/2112.00038
https://arxiv.org/abs/2006.11287

Validation

Power of ML comes from finding subtle non-linear patterns in training data, this also makes
it more susceptible to discrepancies between simulation — data.

Sometimes we want to quantify uncertainty of a model itself (eg. Likelihood ratio
estimations) - sometimes you don't (eg. when histogramming the output

Calibration plots (reliability curve)
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Do generative models covert statistical uncertainties in training Source: htps:{neptune aifblogiorier-scor-

sample to systematic uncertainties in generated data” How do
you deal with that i




Uncertainty Propagation / Mitigation

" Decorrelation of a model to the source of uncertainty (eg. uncertain detector response like
an energy scale) [eg. 1611.01046, 2001.05310 for DNNs, 1810.08387 for BDTs]

Data augmentation and other domain-adaptation techniques

Alternatively: Uncertainty Aware Learning to propagate uncertainties to the final result
[2105.08742]

Differentiable program to optimise the final physics goal, including uncertainties [eg.
1806.04743, 2203.05570] st bcorsatr

Beware the danger: Sometimes bias mitigation
techniques only serve to hide the true uncertainties,
rather than reducing them



https://arxiv.org/abs/1611.01046
https://arxiv.org/abs/2001.05310
https://arxiv.org/abs/1810.08387
https://arxiv.org/abs/2105.08742
https://arxiv.org/abs/1806.04743
https://arxiv.org/abs/2203.05570

Reducing uncertainties in other ways

Generative models learning from data could help reduce uncertainties currently coming
from simulation mismodelling like for Hadronization [2203.12660]

ML empowers large experiments to report unbinned measurements which allows better re-
use of data [2109.13243]



https://arxiv.org/abs/2203.12660
https://arxiv.org/abs/2109.13243

Quantification of model uncertainty

Al solutions growing to quantify the uncertainty of a
model prediction

Ensemble of NNs, Bayesian Networks [eg. Generative

models with uncertainties: 2110.13632], Gaussian
Processes

But what is your uncertainty on that uncertainty” It model

'S poorly trained, it could give a wrong prediction with
iIncorrect uncertainties.

The physics and Al communities are starting to engage
on these topics
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https://arxiv.org/abs/2110.13632

L ack of common definitions

Physicists Al researchers

Systematic and Statistical Aleatoric and epistemic
Uncertainties uncertainties

Coverage Calibration




Recommendations

Physics-Al community can put out benchmark datasets for uncertainty quantitication
and mitigation

Encourage community to make code public to test reproducibility of ML heavy studies

Funding agencies should endorse challenges to create and compare UQ, UM
solutions

Common UQ methods should be incorporated into standard packages like SKLearn
for ease of adoption
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Outlook

Sometimes a balancing act between performance and interpretability

Problem not unigue to physics but we could be among leaders this line of research In
Al

Putting out public benchmark datasets will spur creation and comparison of such
techniques and increase engagement between physics and Al communities

Harmonising terminology would help interaction between communities on this topic



