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When studying the universe, we don’t just want the facts, we want to 
understand why things work the way to do, and not some other way


Similarly demand explanations, not just accurate predictions from ML


Important to validate that patterns learnt from simulations will translate to 
data


Techniques emerging to use ML to propagate and mitigate uncertainties 
with ML and also quantify uncertainties of ML models themselves

Science demands more from ML
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What information is the model using?


In simple cases (using high level features), drop an input feature or decorrelate the model 
from feature to find feature importance


Interpretable ML
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FIG. 1. Schematic of the black-box guided search in Sec. II B. In each iteration of this strategy, the relative decision ordering of
signal/background pairs between the fixed black-box network (BBN, black triangle) and a trainable network of HL observables
(HLN, white triangle) is used to identify the subset (red box) in which pairs are di↵erently ordered. From a large space of HL
observables (circles), the one with the largest ADO in the misordered space (blue circle) is selected for the next iteration. The
schematic above corresponds to the n = 4 iteration. Note that the BBN is not retrained in each iteration, but the network of
HL observables is.

These steps are repeated until ADO[BBN,HLNn+1] gets
as close to 1 as desired.

Isolating the di↵erently-classified pairs in Eq. (8) is
similar in spirit to the boosting step of BDTs [69, 70].
This approach focuses attention only on the subspace
of pairs where the BBN disagrees with the current set
of HL observables, allowing us to identify new HL ob-
servables that make signal-background ordering decisions
most similar to the BBN in that subspace. It is worth
emphasizing that the ADO, or some other metric for net-
work decision similarity, is essential for this approach to
work.

Later in Sec. VC, we will compare this black-box
guided approach to a label guided approach. Instead
of using the ADO, the label guided approach uses the
AUC with respect to ground truth information. It is
straightforward to understand why the ADO is superior
to the AUC for guiding purposes. To the extent that the
BBN is well trained, it represents a good approximation
to the Neyman–Pearson optimal classifier. Achieving the
correct DO relative to the optimal classifier for every sig-
nal/background training pair is the best one could ever
hope to do. Therefore, if the black-box guiding strategy
is working correctly, then the subsets Xn will get smaller
and smaller until almost all signal/background pairs have
been correctly ordered relative to the BBN.

By contrast, the AUC captures DO relative to truth
labels. Unless the BBN is able to achieve AUC = 1, there
will inevitably be signal/background pairs that are incor-

rectly ordered even by the theoretically optimal classifier.
Instead of getting smaller and smaller, the subsets Xn

will stall at the set of signal/background pairs that can
never be ordered correctly. This in turn means that the
classification performance of HLNn will stall well below
the theoretical maximum in the label guided approach.
That is why we advocate for the selection of HL observ-
ables to be guided by the ADO, since then the classifi-
cation performance of the HLNn will eventually match
that of the BBN, as desired.
As with any “greedy algorithm”, our black-box guided

strategy cannot identify situations where two HL observ-
ables could be combined simultaneously to match the
BBN decision surfaces. This means that we might miss
sets of observables that are individually poor classifiers
but perform well jointly. If the goal were to just to max-
imize performance, this would be an undesirable feature.
In the context of mapping a black-box ML strategy to
a physically-interpretable space, though, we are indeed
looking for individual observables with high information
content relevant for classification, so this greedy strategy
is the one most likely to yield physical insight.

III. A CASE STUDY IN JET SUBSTRUCTURE

We now apply the technique introduced in Sec. II to
a specific case study involving jet classification at the
LHC. In this section, we review boosted W boson clas-

For unstructured data like images, new 
methods are being explored.


Example [2010.11998]: Automated way to find 
a set of high level features [EFNs] that include 
all the information a CNN is implicitly learning 
from raw calorimeter images

https://arxiv.org/pdf/2010.11998.pdf
https://arxiv.org/abs/1712.07124
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Construct networks that do not violate theoretical constraints (infrared / 
collinear safety for jet images) [EFPs], or are provably monotonic w.r.t. some 
feature [2112.00038]

Constrain structure of model

Figure 1: A cartoon depicting how we extract physical equations from a dataset.

Furthermore, generalization is difficult without prior knowledge about the data imposed directly on
the model. Even if we impose strong inductive biases on the models to improve generalization, the
learned parts of networks typically are linear piece-wise approximations which extrapolate linearly
(if using ReLU as activation [3]).

Here, we propose a general framework to leverage the advantages of both deep learning and symbolic
regression. As an example, we study Graph Networks (GNs or GNNs) [4] as they have strong and
well-motivated inductive biases that are very well suited to problems we are interested in. Then we
apply symbolic regression to fit different internal parts of the learned model that operate on reduced
size representations. The symbolic expressions can then be joined together, giving rise to an overall
algebraic equation equivalent to the trained GN. Our work is a generalized and extended version of
that in [5].

We apply our framework to three problems—rediscovering force laws, rediscovering Hamiltoni-
ans, and a real world astrophysical challenge—and demonstrate that we can drastically improve
generalization, and distill plausible analytical expressions. We not only recover the injected closed-
form physical laws for Newtonian and Hamiltonian examples, we also derive a new interpretable
closed-form analytical expression that can be useful in astrophysics.

2 Framework

Our framework can be summarized as follows. (1) Engineer a deep learning model with a separable
internal structure that provides an inductive bias well matched to the nature of the data. Specifically,
in the case of interacting particles, we use Graph Networks as the core inductive bias in our models.
(2) Train the model end-to-end using available data. (3) Fit symbolic expressions to the distinct
functions learned by the model internally. (4) Replace these functions in the deep model by the
symbolic expressions. This procedure with the potential to discover new symbolic expressions for
non-trivial datasets is illustrated in fig. 1.

Particle systems and Graph Networks. In this paper we focus on problems that can be well
described as interacting particle systems. Nearly all of the physics we experience in our day-to-day
life can be described in terms of interactions rules between particles or entities, so this is broadly
relevant. Recent work has leveraged the inductive biases of Interaction Networks (INs) [6] in their
generalized form, the Graph Network, a type of Graph Neural Network [7, 8, 9], to learn models of
particle systems in many physical domains [6, 10, 11, 12, 13, 14, 15, 16].

Therefore we use Graph Networks (GNs) at the core of our models, and incorporate into them
physically motivated inductive biases appropriate for each of our case studies. Some other interesting
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Embed physics symmetries / interactions in 
the network structure


Symbolic regression [2006.11287]

https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/2112.00038
https://arxiv.org/abs/2006.11287
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Power of ML comes from finding subtle non-linear patterns in training data, this also makes 
it more susceptible to discrepancies between simulation – data.


Sometimes we want to quantify uncertainty of a model itself (eg. Likelihood ratio 
estimations) - sometimes you don’t (eg. when histogramming the output


Validation

Source: https://neptune.ai/blog/brier-score-
and-model-calibration
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Calibration of a model: Is the model over/under-confident 
of its predictions?

Do generative models covert statistical uncertainties in training 
sample to systematic uncertainties in generated data? How do 
you deal with that 
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Decorrelation of a model to the source of uncertainty (eg. uncertain detector response like 
an energy scale) [eg. 1611.01046, 2001.05310 for DNNs, 1810.08387 for BDTs]


Data augmentation and other domain-adaptation techniques


Alternatively: Uncertainty Aware Learning to propagate uncertainties to the final result 
[2105.08742]


Differentiable program to optimise the final physics goal, including uncertainties [eg. 
1806.04743, 2203.05570]


Uncertainty Propagation / Mitigation

Beware the danger: Sometimes bias mitigation 
techniques only serve to hide the true uncertainties, 
rather than reducing them

result of approximations when performing calculations and are also due to parameter free-

dom in phenomenological models that are needed when first-principles calculations are not

possible. The canonical examples for these two types of uncertainties are perturbative

uncertainties from series truncation and fragmentation modeling. For the former, calcu-

lations are truncated at a fixed order in perturbation theory and the result depends on

unphysical scales. These scales are varied typically by factors of two in order to determine

the uncertainty. Fragmentation modeling uncertainties are often evaluated by comparing

two di↵erent models, such as the string model [29, 30] in the Pythia [31, 32] parton shower

Monte Carlo (PSMC) and the cluster model [33, 34] in the Herwig [35, 36] PSMC. These

variations are then interpreted as a one standard deviation uncertainty and combined with

other sources of uncertainty in a final statistical analysis.

We examine the interplay of decorrelation with theory uncertainties. In particular,

we will show that constructing a classifier that is independent of a given theory nuisance

parameter does not mean that the theory uncertainty is zero. Instead, it means that

the only handle to determine the theory uncertainty is eliminated. Figure 1 illustrates the

intuition behind why this might be the case. As concrete examples, we study fragmentation

modeling for Lorentz-boosted W boson jet classification and factorization scale variations

when classifying events as either from W+jets or t-channel single top quark events.

Pythia

Herwig

Sherpa

Next year’s 
generator

Nature

Estimated Uncertainty

Without Decorrelation

Pythia
Herwig
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Next year’s 
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Estimated Uncertainty

With Decorrelation

Figure 1. An illustration of the potential impact of training a classifier to be decorrelated to
two-point uncertainties. The distance between Pythia and Herwig is treated as the uncertainty.
Left: Without decorrelation, the uncertainty covers nature even if nature does not lie on the line
connecting Pythia and Herwig. Right: The distance between Pythia and Herwig is reduced
due to the decorrelation requirement, resulting in a smaller estimate of the uncertainty, which no
longer covers nature. These diagrams are meant only to be intuitive illustrations.

This paper is organized as follows. Section 2 briefly introduces existing decorrela-

tion techniques. Numerical examples of both two-point and continuous uncertainties are

provided in Sec. 3. The paper ends with conclusions and outlook in Sec. 4.

– 2 –

https://arxiv.org/abs/1611.01046
https://arxiv.org/abs/2001.05310
https://arxiv.org/abs/1810.08387
https://arxiv.org/abs/2105.08742
https://arxiv.org/abs/1806.04743
https://arxiv.org/abs/2203.05570
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Generative models learning from data could help reduce uncertainties currently coming 
from simulation mismodelling like for Hadronization [2203.12660]


ML empowers large experiments to report unbinned measurements which allows better re-
use of data [2109.13243]

Reducing uncertainties in other ways

https://arxiv.org/abs/2203.12660
https://arxiv.org/abs/2109.13243
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AI solutions growing to quantify the uncertainty of a 
model prediction


Ensemble of NNs, Bayesian Networks [eg. Generative 
models with uncertainties: 2110.13632], Gaussian 
Processes


But what is your uncertainty on that uncertainty? If model 
is poorly trained, it could give a wrong prediction with 
incorrect uncertainties.


The physics and AI communities are starting to engage 
on these topics


Quantification of model uncertainty

NN Ensemble

Gaussian Process

https://arxiv.org/abs/2110.13632
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Systematic and Statistical 
Uncertainties

Lack of common definitions

Aleatoric and epistemic 
uncertainties

Coverage Calibration

Physicists AI researchers

… …
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Physics-AI community can put out benchmark datasets for uncertainty quantification 
and mitigation


Encourage community to make code public to test reproducibility of ML heavy studies


Funding agencies should endorse challenges to create and compare UQ, UM 
solutions


Common UQ methods should be incorporated into standard packages like SKLearn 
for ease of adoption

Recommendations
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Sometimes a balancing act between performance and interpretability


Problem not unique to physics but we could be among leaders this line of research in 
AI


Putting out public benchmark datasets will spur creation and comparison of such 
techniques and increase engagement between physics and AI communities


Harmonising terminology would help interaction between communities on this topic

Outlook


