

Collider Theory

Ian Moult Yale

Particle Colliders

• Particle colliders provide one of the most spectacular examples of a simple underlying theory producing remarkably complicated data sets.

$$\mathcal{L}_{\rm QCD} = -\frac{1}{4}G^a_{\mu\nu}G^{\mu\nu a} + \sum_f \bar{q}_f (i\not\!\!\!D - m_f)q_f$$

• This has enabled (combined with sustained theory efforts) the development of high fidelity simulations (Pythia, Herwig, Sherpa, ...).

Jet Substructure

- Many remarkable phenomena of quantum field theory are imprinted in subtle correlations in collider energy flux:
 - Interactions of asymptotically free quarks and gluons.
 - Real time dynamics of confinement.
 - Nature of the QGP.
 - Phase diagram of QCD.
 -

Formal Theory Progress

 Formal theory has provided powerful new tools to compute these observables, and relate them to parameters of the underlying theory.

Theory-Experiment Gap

• The extraordinary complexity of the LHC dataset, has produced a gap between what theorists want, and what can be measured.

Theory-Experiment Gap

• The extraordinary complexity of the LHC dataset, has produced a gap between what theorists want, and what can be measured.

From Detector Data to Theory Comparisons

- To interpret theoretically, measurements require "inverting" the effects of the detector: Unfolding.
- "Simple" if one projects to low dimensional features such as jets.
- To measure statistical properties of energy flux requires unfolding the full particle phase space.

Likelihood Free Inference

- Traditional approaches to unfolding that explicitly determine the likelihood fail:
 - High dimensional input space full phase space of detector effects
 - High dimensional output space space of energy correlations
- This is a common feature of many modern data sets in the physical sciences, for which we have high fidelity simulations.

[Cranmer, Brehmer, Louppe] [Karagiori, Kasieczka, Kravitz, Nachman, Shih]

 Significant progress in "Likelihood free inference" using ML based techniques.

Omnifold

Seminal advance in unfolding for collider physics: Omnifold

- Rigorously proven to reduce to Iterative Bayesian Unfolding.
- Explicit expression for likelihood intractable in high dimension
 circumvented by classification task.
- Unfolding of qualitatively new observables (Energy Correlators),
 combined with theory progress

 transformative progress in QCD.

Summary

 Collider physics inextricably ties Data Science and Quantum Field Theory.

 Combined with theory progress, this opens the door to a precision physics program using jet substructure!

