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SCOPE: INDUCTIVE BIAS

▸ Incorporating domain knowledge into ML 
(inductive bias) can provide better task 
performance, better sample efficiency, 
smaller model size, interpretability and 
explainability, and robustness against 
domain shift 
▸ e.g. image classification is translation-

invariant and some architectures respect 
that

2
dropbox.com/s/o3ehw70ou6rpsze/
CompF3_Report_Jun28.pdf?dl=0

https://www.dropbox.com/s/o3ehw70ou6rpsze/CompF3_Report_Jun28.pdf?dl=0
https://www.dropbox.com/s/o3ehw70ou6rpsze/CompF3_Report_Jun28.pdf?dl=0


SCOPE: INDUCTIVE BIAS

▸ Incorporating domain knowledge into ML 
(inductive bias) can provide better task 
performance, better sample efficiency, 
smaller model size, interpretability and 
explainability, and robustness against 
domain shift 
▸ e.g. image classification is translation-

invariant and some architectures respect 
that

2
dropbox.com/s/o3ehw70ou6rpsze/
CompF3_Report_Jun28.pdf?dl=0

https://www.dropbox.com/s/o3ehw70ou6rpsze/CompF3_Report_Jun28.pdf?dl=0
https://www.dropbox.com/s/o3ehw70ou6rpsze/CompF3_Report_Jun28.pdf?dl=0


SCOPE: INDUCTIVE BIAS

▸ Incorporating domain knowledge into ML 
(inductive bias) can provide better task 
performance, better sample efficiency, 
smaller model size, interpretability and 
explainability, and robustness against 
domain shift 
▸ e.g. image classification is translation-

invariant and some architectures respect 
that

2
dropbox.com/s/o3ehw70ou6rpsze/
CompF3_Report_Jun28.pdf?dl=0

https://www.dropbox.com/s/o3ehw70ou6rpsze/CompF3_Report_Jun28.pdf?dl=0
https://www.dropbox.com/s/o3ehw70ou6rpsze/CompF3_Report_Jun28.pdf?dl=0


SCOPE: INDUCTIVE BIAS

▸ Incorporating domain knowledge into ML 
(inductive bias) can provide better task 
performance, better sample efficiency, 
smaller model size, interpretability and 
explainability, and robustness against 
domain shift 
▸ e.g. image classification is translation-

invariant and some architectures respect 
that

▸ Examples for HEP include:  
▸ Graph data representations 
▸ Physics-constrained ML 
▸ Symmetry-equivariant networks
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▸ In CS, tailoring algorithms to the structure (and symmetries) of the data has led 
to groundbreaking performance
▸ CNNs for images

▸ RNNs for language processing

▸ What about high energy physics data?

▸ Distributed 
unevenly in space 

▸ Sparse 
▸ Variable size 
▸ No defined order 
▸ Interconnections

→ Graphs

WP: arXiv:2203.12852
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▸ Node-level tasks 
▸ Identify "pileup" particles 
▸ Particle-flow

▸ Graph-level tasks 
▸ Jet tagging 
▸ Shower energy estimation

▸ Edge-level tasks 
▸ Identify good track doublets 
▸ Secondary vertex reconstruction
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tj , and let the left and right children of node k be denoted by kL and kR respectively. Let

also kL always be the hardest child of k. By construction, we suppose that leaves k map

to particles i(k) while internal nodes correspond to recombinations. Using these notations,

we recursively define the embedding h
jet
k

2 Rq of node k in tj as

v1 v2 ... vNj

hjet
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hjet
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Figure 1. QCD-motivated recursive jet
embedding for classification. For each
individual jet, the embedding h

jet
1 (tj) is

computed recursively from the root node
down to the outer nodes of the binary tree
tj . The resulting embedding is chained
to a subsequent classifier, as illustrated in
the top part of the figure. The topology of
the network in the bottom part is distinct
for each jet and is determined by a sequen-
tial recombination jet algorithm (e.g., kt
clustering).
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CCA otherwise

(3.1)

uk = � (Wug(ok) + bu) (3.2)

ok =

(
vi(k) if k is a leaf

okL + okR otherwise
(3.3)

where Wh 2 Rq⇥3q, bh 2 Rq, Wu 2 Rq⇥4 and

bu 2 Rq form together the shared parameters to

be learned, q is the size of the embedding, � is the

ReLU activation function [18], and g is a function

extracting the kinematic features p, ⌘, ✓, �, E, and

pT from the 4-momentum ok.

When applying Eqn. 3.1 recursively from the

root node k = 1 down to the outer nodes of

the binary tree tj , the resulting embedding, de-

noted h
jet
1 (tj), e↵ectively summarizes the informa-

tion contained in the particles forming the jet into

a single vector. In particular, this recursive neural

network (RNN) embeds a binary tree of varying

shape and size into a vector of fixed size. As a

result, the embedding h
jet
1 (tj) can now be chained

to a subsequent classifier or regressor to solve our

target supervised learning problem, as illustrated

in Figure 1. All parameters (i.e., of the recursive

jet embedding and of the classifier) are learned

jointly using backpropagation through structure

[9] to minimize the loss Ljet, hence tailoring the

embedding to the specific requirements of the task.

Further implementation details, including an ef-

ficient batched computation over distinct binary

trees, can be found in Appendix C.

– 4 –

▸ Physics-motivated architectures like 
▸ QCD-aware recursive and graph networks

arXiv:1702.00748
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Figure 3: The specific architecture used for the three jet tagging scenarios of an Energy-weighted
Message-Passing network(EMPN), with a single energy-weighted message passing operation. It
takes graphs of constant radius R0 in the (⌘,�)-plane. The message-passing network �(0), takes the
directional inputs of the four-vectors in the form of h(0)

i , and calculates a weighted message im(0)
j

with !
(N [i])
j as the weights. It then undergoes a summed node readout operation to update their

features to h(1)
i . The graph representation g obtained after a summed graph readout operation on

the node features h(1)
j weighted with !

(S)
j , is fed into a DNN which outputs a binary classification

score.

with zi = !
(S)
i , is IRC safe. This is an analogue of the sum over the per-particle represen-

tation employed in EFNs. The graph convolution operation now replaces the per-particle

maps. The scale of the representation which undergoes the sum, which contains local

structural information, is determined by the number of message-passing operations and

the graph construction algorithm. A schematic representation of such a network for L = 1

is shown in Figure 3.

4 Details of network implementation

In this section, we present the numerical results of the IRC safe message passing neural net-

work. The details of the datasets are given first, followed by the network hyperparameters

and training aspects.

– 15 –
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▸ Physics-motivated architectures like 
▸ QCD-aware recursive and graph networks
▸ Infrared/collinear-safe networks
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Figure 1: A visualization of the decomposition of an observable via Eq. (1.1). Each particle

in the event is mapped by � to an internal (latent) particle representation, shown here as

three abstract illustrations for a latent space of dimension three. The latent representation is

then summed over all particles to arrive at a latent event representation, which is mapped by

F to the value of the observable. For the IRC-safe case of Eq. (1.2), � takes in the angular

information of the particle and the sum is weighted by the particle energies or transverse

momenta.

where this appears is learning from point clouds, sets of data points in space. For instance, the

output of spatial sensors such as lidar, relevant for self-driving car technologies, is often in the

form of a point cloud. As point clouds share the variable-length and permutation-symmetric

properties with collider events, it is worthwhile to understand and expand upon point cloud

techniques for particle physics applications.

The Deep Sets framework for point clouds, recently developed in Ref. [63], demonstrates

how permutation-invariant functions of variable-length inputs can be parametrized in a fully

general way. In Ref. [63], the method was applied to a wide variety of problems including red-

shift estimation of galaxy clusters, finding terms associated with a set of words, and detecting

anomalous faces in a set of images. The key observation is that summation, which is clearly

symmetric with respect to the order of the arguments, is general enough to encapsulate all

symmetric functions if one is allowed a large enough internal (latent) space.

In the context of a physics observable O that is a symmetric function of an arbitrary

– 3 –
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▸ Physics-motivated architectures like 
▸ QCD-aware recursive and graph networks
▸ Infrared/collinear-safe networks

▸ Potentially more robust, interpretable, easier 
to quantify uncertainties

▸ Other constraints: speed, size, etc.
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▸ Symmetry-equivariant networks, 
e.g. for Lorentz symmetry 
▸ More economical (fewer, but 

more expressive parameters), 
interpretable, and trainable

WP: arXiv:2201.08187

� EQUIVARIANCE IN MACHINE LEARNING 5

Figure 1: An illustration of the di�erences between symmetry group invariance and equivariance for the
example case of identifying a handwritten letter in an image. Here, 5 : - ! . is a map between vector spaces
- and . . d6 (G) ⌘ d(6, G) is an action of a group ⌧ on - and d

0
6 (H) ⌘ d

0(6, H) is an action of a group ⌧ on
. . The invariant model (left) will output the same result on both the original and translated images, while the
equivariant model (right) will transform the translated image in a way that reflects the underlying symmetry
group. More formally, this means that the map 5 is equivariant with respect to the actions d : ⌧ ⇥ - ! -

and d
0 : ⌧ ⇥ . ! . if 5 (d6 (G)) = d

0
6 ( 5 (G)) for all G 2 - and 6 2 ⌧.

https://arxiv.org/abs/2201.08187
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Figure 1. (left): The structure of the Lorentz Group Equivariant Block (LGEB). (right): The
network architecture of the LorentzNet.

Lorentz Group Equivariant Block. We use hl = (hl1, h
l
2, · · · , hlN ) to denote the node

embedding scalars, and xl = (xl1, x
l
2, · · · , xlN ) to denote the coordinate embedding vectors in

the l-th LGEB layer. When l = 0, x0i equals the input of the 4-momenta vi and h0i equals the
embedded input of the scalar variables si. LGEB aims to learn deeper embeddings hl+1, xl+1

via current hl, xl. Motivated by Equation (3.1), the message passing of LorentzNet is written
as follows. We use mij to denote the edge message between particle i and j, and it encodes
the scalar information of the particle i and j, i.e.,

ml
ij = �e

⇣
hli, h

l
j , (kxli � xljk2), (hxli, xlji)

⌘
, (3.2)

where �e(·) is a neural network and  (·) = sgn(·) log(| · | + 1) in Equation (3.2) is to
normalize large numbers from broad distributions for ease of optimization. Except for the
embedding of the scalar features hli and hlj , according to Proposition 3.1, the input of the
neural network contains the Minkowski dot product hxi, xji. The kxli�xljk2 is also included
because the interaction between particles relies on this term and we include it as a prior
feature for ease of learning.

According to Equation (3.1), we design Minkowski dot product attention as

xl+1
i = xli + c

X

j2[N ]

�x(m
l
ij) · xlj (3.3)

where �x(·) 2 R is a scalar function modeled by neural networks. To ensure the equiv-
ariance, we can not arbitrarily apply the normalization trick to control the scale of xl+1

i .
Therefore, the hyperparameter c is introduced to control the scale of xl+1

i to avoid the scale
exploding. This step captures the interactions of the i-th particle with other particles via
the ensemble of the 4-momenta of all particles. Unlike most of the symmetry-preserving
neural networks such as LGN and EGNN [56] (for E(n) equivariance)1 which only apply

1
The relation with EGNN is discussed in the Appendix B.
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Boosted heavy objects

Search for new heavy particles

! Decays into high-pT Top/W/Z/Higgs

! Boosted decays

! Reconstruction of hadronic decays in a single jet

Example: top quark

resolved boosted

Dennis Schwarz ICHEP 2020 2
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- and . . d6 (G) ⌘ d(6, G) is an action of a group ⌧ on - and d

0
6 (H) ⌘ d

0(6, H) is an action of a group ⌧ on
. . The invariant model (left) will output the same result on both the original and translated images, while the
equivariant model (right) will transform the translated image in a way that reflects the underlying symmetry
group. More formally, this means that the map 5 is equivariant with respect to the actions d : ⌧ ⇥ - ! -

and d
0 : ⌧ ⇥ . ! . if 5 (d6 (G)) = d

0
6 ( 5 (G)) for all G 2 - and 6 2 ⌧.
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▸ Symmetry-equivariant networks, 
e.g. for Lorentz symmetry 
▸ More economical (fewer, but 

more expressive parameters), 
interpretable, and trainable
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Figure 1. (left): The structure of the Lorentz Group Equivariant Block (LGEB). (right): The
network architecture of the LorentzNet.

Lorentz Group Equivariant Block. We use hl = (hl1, h
l
2, · · · , hlN ) to denote the node

embedding scalars, and xl = (xl1, x
l
2, · · · , xlN ) to denote the coordinate embedding vectors in

the l-th LGEB layer. When l = 0, x0i equals the input of the 4-momenta vi and h0i equals the
embedded input of the scalar variables si. LGEB aims to learn deeper embeddings hl+1, xl+1

via current hl, xl. Motivated by Equation (3.1), the message passing of LorentzNet is written
as follows. We use mij to denote the edge message between particle i and j, and it encodes
the scalar information of the particle i and j, i.e.,

ml
ij = �e

⇣
hli, h

l
j , (kxli � xljk2), (hxli, xlji)

⌘
, (3.2)

where �e(·) is a neural network and  (·) = sgn(·) log(| · | + 1) in Equation (3.2) is to
normalize large numbers from broad distributions for ease of optimization. Except for the
embedding of the scalar features hli and hlj , according to Proposition 3.1, the input of the
neural network contains the Minkowski dot product hxi, xji. The kxli�xljk2 is also included
because the interaction between particles relies on this term and we include it as a prior
feature for ease of learning.

According to Equation (3.1), we design Minkowski dot product attention as

xl+1
i = xli + c

X

j2[N ]

�x(m
l
ij) · xlj (3.3)

where �x(·) 2 R is a scalar function modeled by neural networks. To ensure the equiv-
ariance, we can not arbitrarily apply the normalization trick to control the scale of xl+1

i .
Therefore, the hyperparameter c is introduced to control the scale of xl+1

i to avoid the scale
exploding. This step captures the interactions of the i-th particle with other particles via
the ensemble of the 4-momenta of all particles. Unlike most of the symmetry-preserving
neural networks such as LGN and EGNN [56] (for E(n) equivariance)1 which only apply

1
The relation with EGNN is discussed in the Appendix B.
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OUTLOOK AND RECOMMENDATIONS 

▸ Physics-specific ML development is advancing HEP research

8
dropbox.com/s/o3ehw70ou6rpsze/
CompF3_Report_Jun28.pdf?dl=0

https://www.dropbox.com/s/o3ehw70ou6rpsze/CompF3_Report_Jun28.pdf?dl=0
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OUTLOOK AND RECOMMENDATIONS 

▸ Physics-specific ML development is advancing HEP research
▸ ML models with baked-in physics laws can preserve important aspects HEP 

problems and provide interpretability
▸ Encoding key physics knowledge results in quicker learning with smaller training 

samples
▸ Recommendations: 
▸ Dedicated support and review criteria that helps research along this category  
▸ Defined metrics concerning the strengths of physics-specific ML (e.g. sample 

efficiency, learning speed, interpretability) 
▸ Support for common and application-specific software development, technical 

research staff, establishing an interdisciplinary research community and close 
connection between the funding agencies and the research community
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