JAVIER DUARTE SNOWMASS 2022 JULY 19, 2022

FOR DATA ANALYSIS

- Incorporating domain knowledge into ML (inductive bias) can provide better task performance, better sample efficiency, smaller model size, interpretability and explainability, and robustness against domain shift
 - e.g. image classification is translationinvariant and some architectures respect that

dropbox.com/s/o3ehw70ou6rpsze/ CompF3_Report_Jun28.pdf?dl=0

2

- Incorporating domain knowledge into ML (inductive bias) can provide better task performance, better sample efficiency, smaller model size, interpretability and explainability, and robustness against domain shift
 - e.g. image classification is translationinvariant and some architectures respect that

dropbox.com/s/o3ehw70ou6rpsze/

- Incorporating domain knowledge into ML (inductive bias) can provide better task performance, better sample efficiency, smaller model size, interpretability and explainability, and robustness against domain shift
 - e.g. image classification is translationinvariant and some architectures respect that

dropbox.com/s/o3ehw70ou6rpsze/

- Incorporating domain knowledge into ML (inductive bias) can provide better task performance, better sample efficiency, smaller model size, interpretability and explainability, and robustness against domain shift
 - e.g. image classification is translationinvariant and some architectures respect that
- Examples for HEP include:
 - Graph data representations
 - Physics-constrained ML
 - Symmetry-equivariant networks

dropbox.com/s/o3ehw70ou6rpsze/

samiraabnar.github.io/articles/2020-05/indist 3

In CS, tailoring algorithms to the structure (and symmetries) of the data has led to groundbreaking performance

WP: <u>arXiv:2203.12852</u> 4

- to groundbreaking performance
 - CNNs for images

WP: <u>arXiv:2203.12852</u> 4

- to groundbreaking performance
 - CNNs for images

WP: <u>arXiv:2203.12852</u> 4

- to groundbreaking performance
 - CNNs for images

What about high energy physics data?

WP: <u>arXiv:2203.12852</u> 4

- to groundbreaking performance
 - CNNs for images

What about high energy physics data?

- Distributed
 - unevenly in space
- Sparse
- Variable size
- No defined order
- Interconnections

- to groundbreaking performance
 - CNNs for images

What about high energy physics date

or language processing

WP: <u>arXiv:2203.12852</u> 5

- Node-level tasks
 - Identify "pileup" particles

- Node-level tasks
 - Identify "pileup" particles

- Graph-level tasks
 - Jet tagging

- Node-level tasks
 - Identify "pileup" particles

- Graph-level tasks
 - Jet tagging

Secondary vertex reconstruction

PHYSICS-CONSTRAINED ML

Physics-motivated architectures like OCD-aware recursive and graph networks

arXiv:1702.00748

PHYSICS-CONSTRAINED ML

Physics-motivated architectures like

- OCD-aware recursive and graph networks
- Infrared/collinear-safe networks

arXiv:1810.05165

arXiv:2109.14636

arXiv:1702.00748

PHYSICS-CONSTRAINED ML

- Physics-motivated architectures like
 - OCD-aware recursive and graph networks
 - Infrared/collinear-safe networks
- Potentially more robust, interpretable, easier to quantify uncertainties
- Other constraints: speed, size, etc.

All nodes are updated.

arXiv:1810.05165

arXiv:2109.14636

SYMMETRY-EQUIVARIANT NETWORKS

- Symmetry-equivariant networks, e.g. for Lorentz symmetry
 - More economical (fewer, but more expressive parameters), interpretable, and trainable

Invariance

 $f(\rho_g(x)) = f(x)$

Equivariance $f(\rho_g(x)) = \rho'_g(f(x))$

WP: <u>arXiv:2201.08187</u> 7

SYMMETRY-EQUIVARIANT NETWORKS

- Symmetry-equivariant networks, e.g. for Lorentz symmetry
 - More economical (fewer, but more expressive parameters), interpretable, and trainable

Invariance

 $f(\rho_g(x)) = f(x)$

Equivariance $f(\rho_g(x)) = \rho'_g(f(x))$

WP: <u>arXiv:2201.08187</u> 7

arXiv:2201.08187

SYMMETRY-EQUIVARIANT NETWORKS

- Symmetry-equivariant networks, e.g. for Lorentz symmetry
 - More economical (fewer, but) more expressive parameters), interpretable, and trainable

Invariance

 $f(\rho_g(x)) = f(x)$

Equivariance $f(\rho_g(x)) = \rho'_g(f(x))$

WP: <u>arXiv:2201.08187</u> 7

Physics-specific ML development is advancing HEP research

dropbox.com/s/o3ehw70ou6rpsze/

CompF3_Report_Jun28.pdf?dl=0

- Physics-specific ML development is advancing HEP research
- problems and provide interpretability

dropbox.com/s/o3ehw70ou6rpsze/

CompF3_Report_Jun28.pdf?dl=0

ML models with baked-in physics laws can preserve important aspects HEP

- Physics-specific ML development is advancing HEP research
- ML models with baked-in physics laws can preserve important aspects HEP problems and provide interpretability
- Encoding key physics knowledge results in quicker learning with smaller training samples

dropbox.com/s/o3ehw70ou6rpsze/ CompF3_Report_Jun28.pdf?dl=0

- Physics-specific ML development is advancing HEP research
- ML models with baked-in physics laws can preserve important aspects HEP problems and provide interpretability
- Encoding key physics knowledge results in quicker learning with smaller training samples
- Recommendations:
 - Dedicated support and review criteria that helps research along this category
 - Defined metrics concerning the strengths of physics-specific ML (e.g. sample) efficiency, learning speed, interpretability)
 - Support for common and application-specific software development, technical research staff, establishing an interdisciplinary research community and close connection between the funding agencies and the research community

dropbox.com/s/o3ehw70ou6rpsze/ CompF3_Report_Jun28.pdf?dl=0

