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ML brings prediction

systems to online/local

Fast Simulations for Accelerators and Detectors tools from HPC

Physics simulations for accelerators and detectors are
powerful tools but are computationally expensive

Numerous ML approaches being taken to create fast-
executing representations of detailed simulations
- “surrogate models” (GANs, Bayesian NNs, VAEs, Simple NNs)

Faster predictions enable enhanced capabilities:
More comprehensive design + experiment planning

Discovery and online monitoring of differences between
simulations and the real instrument (“calibration”)

Online predictions to provide more information for
control and analysis

Model-informed online control

Future: “end-to-end” optimization from accelerator to
detector/experiment
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Accelerator simulation: 10 hrs on thousands Neural network surrogate:
of cores at NERSC! <ms (106 speedup)

See accelerator community modeling WP: arXiv:2203.08335

0
Longitudinal position(zm)



https://arxiv.org/abs/1712.10321
https://arxiv.org/abs/2203.08335

Differentiable Physics Simulations and ML

Modern ML uses gradients in learning = differentiable physics sims enable modular combinations with ML components, analyses, etc.

Fundamentally new approach in combining physics models, data, and ML

Applied magnetic field
Ho., = {Ho, Hy,..., Hyi}

+ Hysteresis model

Magnetization
Ty = M(Ho,t)

Gaussian process
model

Beam measurement
Yt = f(ZL't) A E

Differentiable physics model of hysteresis
combined with ML enables in situ
characterization of magnetic hysteresis in
accelerator magnets and higher-precision
optimization
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R. Roussel, et al., PRL, 2022, arXiv:2202.07747
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Toward the End-to-End Optimization
of Particle Physics Instruments
with Differentiable Programming:

a White Paper
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Differentiable physics models can facilitate instrument-
wide optimization, from accelerator to detector to
physics analysis
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ML-Assisted Optimization and Characterization

Large, nonlinear, and sometimes noisy search spaces for
accelerators and detectors - need to find optima and

examine trade-offs with limited budget (computational
resources, machine time)

ML-assisted optimization leverages learned representations
to improve sample efficiency. Some methods also include
uncertainty estimation to inform where to sample next
(avoid undesirable regions, target information-rich areas).

Similar set of tools for operation and design (with a few
differences: parallel vs. serial acquisition, need for uncertainty-
aware/safe optimization)
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Bayesian optimization / active learning / reinforcement learning
—> All learn iteratively via online interaction with the system

next point to search
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Learning Algorithm
(GP model + Bayes. opt.,
iterative surrogate, RL
agent)

System (Simulation or
Online Interaction)
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Output constraints learned on-the-fly
R. Roussel et al., arXiv:2106.09202

Observation

Faster multi-objective optimization
with Bayesian optimization and
iterated surrogate models

R. Roussel et al., arXiv:2010.09824
A. Edelen et al., arXiv:1903.07759

X
Local generative
surrogates and gradient
descent for the SHiP
magnetic shield design Kagan et al.
arXiv:2002.046 3¢
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Broad Set of Areas for ML to Impact Operation
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automated control
+ optimization

Data reduction/rejection (kHz/\MHz data streams)
Event triggering

ML-enhanced
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——— GP w/ correlations
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(fast sims, differentiable sims, model calibration, model adaptation)
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digital twins + online modeling

alert to changes in machine;
alert to interesting science)
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extract unknown
relationships + correlations
(feed into future control / design)
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+ need uncertainty quantification for all
+ can incorporate physics information in all
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Conclusions/Recommendations

Al/ML are enabling broad-sweeping shifts in how accelerators and detectors are designed and operated

Spans search for new experimental setups/designs, optimization of online systems, “seeing into” instrument
operation in real time, opportunities for co-design with ML-based analysis and control techniques (e.g. placement
and type of diagnostics given ML-based reconstruction capabilities)

Modularly combining physics modeling and ML is promising area of research to improve generalizability, reduce
reliance on large data sets, improve interpretability

Broad need also for edge compute + ML (fast prediction, feedback, event triggering and data rejection/reduction)

Other areas that need investment include improving uncertainty quantification and domain adaptation, combining
physics and ML (differentiable simulations, inductive biases), online adaptation and calibration of
models/controllers (both predictions and uncertainties), and combining/scaling up methods into a full integrated
ecosystem

Challenges/needs for design optimization and operation are broadly similar across systems: need investment in
open-source, community software tools and ecosystems = software/firmware infrastructure in addition to
underlying ML methods
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integrated development cycle

Software
Tools

Fundamental
AlI/ML Research

Testing/Deployment
(offline and online)

Adaptation of models and identification of sources

of deviation between simulations and as-built machine
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Online prediction with physics sims

and fast/accurate ML models

Techniques for

combining
physics and ML (more
reliable/transferrable,
require less data, more
interpretable), including
differentiable

simulators

Efficient optimization and characterization (useful also for

simulation exploration/design, data generation)

ground truth
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Output constraints learned on-the-fly

Applied magnetic field
Hy, = {Hy, Hi,..., H}

Magnetization
2y = M(Ho,)

Beam measurement
Y= f(ae) +¢

+ Hysteresis model

Gaussian process
model

Representation learning

(e.g. better ways of modeling beams)

Software packages and

standards for data generation,

modeling, and optimization (LUME,

xopt)

T



Approaches can leverage different amounts of data/previous knowledge: suitable in different circumstances
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Model-Free
Optimization
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Observe performance change
after a setting adjustment

- estimate direction or apply
heuristics toward improvement

\.

assumed knowledge of machine

v

more

J

gradient descent, genetic algorithms,
simplex

Model-guided
Optimization
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J. Kirschner

Update a model at each step

- use model to help select the
next point

Make fast system model

- provide initial guess (i.e. warm
start) for settings

Bayesian optimization
reinforcement learning

ML system models +
inverse models




Example: Injector Surrogate Models
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ML models trained on physics simulations

Inputs sampled widely across valid ranges

Used to develop/prototype new algorithms before
testing online at FACET-Il and LCLS e.g. new Bayesian
optimization methods, adaptive emittance measurement
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ML model provides accurate replication of simulation
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ML models trained on simulations enable fast prototyping of new optimization algorithms = greatly reduces development time




