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Fast Simulations for Accelerators and Detectors
ML brings prediction 

tools from HPC 
systems to online/local 

compute

Online prediction
Model-based control

Control prototyping
Experiment planning

Accelerator simulation: 10 hrs on thousands 
of cores at NERSC!

Neural network surrogate: 
< ms (106 speedup)

Simulation Neural Network

CaloGAN
arXiv:1712.10321

• Physics simulations for accelerators and detectors are
powerful tools but are computationally expensive

• Numerous ML approaches being taken to create fast-
executing representations of detailed  simulations 
à “surrogate models” (GANs, Bayesian NNs, VAEs, Simple NNs)

• Faster predictions enable enhanced capabilities:
• More comprehensive design + experiment planning
• Discovery and online monitoring of differences between 

simulations and the real instrument (“calibration”)
• Online predictions to provide more information for 

control and analysis
• Model-informed online control
• Future: “end-to-end” optimization from accelerator to 

detector/experiment

Automatic
Model 

Calibration

See accelerator community modeling WP: arXiv:2203.08335

https://arxiv.org/abs/1712.10321
https://arxiv.org/abs/2203.08335


Differentiable Physics Simulations and ML
Modern ML uses gradients in learning à differentiable physics sims enable modular combinations with ML components, analyses, etc.
Fundamentally new approach in combining physics models, data, and ML
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Differentiable physics model of hysteresis 
combined with ML enables in situ 

characterization of magnetic hysteresis in 
accelerator magnets and higher-precision 

optimization

Differentiable physics models can facilitate instrument-
wide optimization, from accelerator to detector to 

physics analysis

BO on sys. 
with 
hysteresis

Hybrid BO on 
sys. with 
hysteresis

arXiv:2203.13818

Differentiable matrix 
elements of high energy 
scattering processes

R. Roussel, et al., PRL, 2022, arXiv:2202.07747

Heinrich, Kagan,
arXiv:2203.00057

https://arxiv.org/abs/2203.13818
https://arxiv.org/abs/2202.07747
https://arxiv.org/abs/2203.00057


Large, nonlinear, and sometimes noisy search spaces for
accelerators and detectors à need to find optima and 
examine trade-offs with limited budget (computational 
resources, machine time)

ML-assisted optimization leverages learned representations 
to improve sample efficiency. Some methods also include 
uncertainty estimation to inform where to sample next 
(avoid undesirable regions, target information-rich areas).

Similar set of tools for operation and design (with a few 
differences: parallel vs. serial acquisition, need for uncertainty-
aware/safe optimization)
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ML-Assisted Optimization and Characterization  

Local generative 
surrogates and gradient 
descent for the SHiP
magnetic shield design

Bayesian optimization / active learning / reinforcement learning
à All learn iteratively via online interaction with the system

Learning Algorithm
(GP model + Bayes. opt., 

iterative surrogate, RL 
agent)

System (Simulation or 
Online Interaction)

next point to search

data

Faster multi-objective optimization 
with Bayesian optimization and 
iterated surrogate models

Pareto front: optimal tradeoff between 
parameters of interest

Output constraints learned on-the-fly

ground truth validity probability

Kagan et al.
arXiv:2002.04632

R. Roussel et al.,  arXiv:2010.09824

R. Roussel et al., arXiv:2106.09202

A. Edelen et al., arXiv:1903.07759

https://arxiv.org/abs/2002.04632
https://arxiv.org/abs/2010.09824
https://arxiv.org/abs/2106.09202
https://arxiv.org/abs/1903.07759


digital twins + online modeling
(fast sims, differentiable sims, model calibration, model adaptation)

ML-enhanced 
diagnostics 

(provide insight at faster rate, 
at higher resolution, 

non-invasively)

anomaly detection
failure prediction

(plan maintenance; 
alert to changes in machine; 
alert to interesting science) 

extract unknown
relationships + correlations

(feed into future control / design)

J. Duris
et al., 
PRL,
2020

C. Emma et al., 
PRAB, 2018

+ need uncertainty quantification for all
+ can incorporate physics information in all 

D
ata 

processing

D
ata 

processing

FACET-II
LCLS

automated control
+ optimization

algorithm transfer between systems

Data reduction/rejection (kHz/MHz data streams)
Event triggeringBroad Set of Areas for ML to Impact Operation

R. Shaloo et al.
arXiv:2007.14340

https://arxiv.org/abs/2007.14340


Conclusions/Recommendations
• AI/ML are enabling broad-sweeping shifts in how accelerators and detectors are designed and operated

• Spans search for new experimental setups/designs, optimization of online systems, “seeing into” instrument 
operation in real time, opportunities for co-design with ML-based analysis and control techniques (e.g. placement 
and type of diagnostics given ML-based reconstruction capabilities)

• Modularly combining physics modeling and ML is promising area of research to improve generalizability, reduce 
reliance on large data sets, improve interpretability

• Broad need also for edge compute + ML (fast prediction, feedback, event triggering and data rejection/reduction)

• Other areas that need investment include improving uncertainty quantification and domain adaptation, combining 
physics and ML (differentiable simulations, inductive biases), online adaptation and calibration of 
models/controllers (both predictions and uncertainties), and combining/scaling up methods into a full integrated 
ecosystem

• Challenges/needs for design optimization and operation are broadly similar across systems: need investment in
open-source, community software tools and ecosystems à software/firmware infrastructure in addition to 
underlying ML methods
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Backups
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Roussel et. al. Nat. Comm. 2021

Efficient optimization and characterization (useful also for 
simulation exploration/design, data generation)

Output constraints learned on-the-fly

ground truth validity probability

Hanuka et. al. PRAB , 2021

Techniques for 
combining

physics and ML (more 
reliable/transferrable, 

require less data, more 
interpretable), including 

differentiable 
simulators

Roussel et. al. PRL. 2022

Representation learning
(e.g. better ways of modeling beams)

Online prediction with physics sims 
and fast/accurate ML models

Adaptation of models and identification of sources 
of deviation between simulations and as-built machine

Fundamental 
AI/ML Research

Software 
Tools

Testing/Deployment 
(offline and online)

Software packages and 
standards for data generation, 

modeling, and optimization (LUME, 
xopt)

integrated development cycle
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moreassumed knowledge of machine

Model-Free 
Optimization

Observe performance change 
after a setting adjustment

à estimate direction or apply 
heuristics toward improvement

Model-guided 
Optimization

Update a model at each step

à use model to help select the 
next point

Global Modeling

Make fast system model

à provide initial guess (i.e. warm 
start) for settings

gradient descent, genetic algorithms,
simplex

Bayesian optimization
reinforcement learning

ML system models +
inverse models

Approaches can leverage different amounts of data/previous knowledge: suitable in different circumstances

J. Kirschner

less



• ML models trained on physics simulations

• Inputs sampled widely across valid ranges
• Used to develop/prototype new algorithms before 

testing online at FACET-II and LCLS e.g. new Bayesian 
optimization methods, adaptive emittance measurement

interactive model 
widget and 
visualization tools

Simulation and ML model 
trained on it are qualitatively 

similar to measurements

ML model provides accurate replication of simulation

ML models trained on simulations enable fast prototyping of new optimization algorithms à greatly reduces development time

prototyping 
optimization
algorithms

Example: Injector Surrogate Models


