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ABSTRACT

Cutting edge detectors push sensing technology by further improving spatial and
temporal resolution, increasing detector area and volume, and generally reduc-
ing backgrounds and noise. This has led to a explosion of more and more data
being generated in next-generation experiments. Therefore, the need for near-
sensor, at the data source, processing with more powerful algorithms is becoming
increasingly important to more e�ciently capture the right experimental data,
reduce downstream system complexity, and enable faster and lower-power feed-
back loops. In this paper, we discuss the motivations and potential applications
for on-detector AI. Furthermore, the unique requirements of particle physics
can uniquely drive the development of novel AI hardware and design tools. We
describe existing modern work for particle physics in this area. Finally, we out-
line a number of areas of opportunity where we can advance machine learning
techniques, codesign workflows, and future microelectronics technologies which
will accelerate design, performance, and implementations for next generation
experiments.
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on the Future of Particle Physics (Snowmass 2021)
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2. Science drivers
• Scientific discoveries are enabled by 

probing nature at higher spatial and 
temporal precision 

• Results in rapidly growing scientific data 
pipelines! 

• Complex and rich data - powerful 
algos 

• Data transmission is far less efficient 
than data processing  

• Explore the power of AI-at-source!
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2. Science drivers
• Extreme environments in HEP experiments (power, rate, radiation, cryo,…) 

• AI in near-detector electronics is natural evolution 
• can be a driver for progress in other scientific domains 

• Benefits: 
• ML algorithms can enable powerful and efficient non-linear data reduction or feature 

extraction techniques, preserves the physics content that would otherwise be lost; 
• Reduce the complexity of down stream processing systems and transmit less overall 

information 
• Enables real-time data filtering and triggering which would otherwise not be possible 

or be much less efficient; or in the case of cryogenic systems, creates less data 
bandwidth from cold to warm electronics and thus reduce the system complexity;  

• Enable faster feedback loops - e.g., in continuous learning applications where data is 
part of control or operations loop such as in quantum information systems or particle 
accelerators
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3. Community needs
• This is not a new idea :)
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3. Community needs
• This is not a new idea :) 
• What’s changed? 

• Broader necessity 
• Moore’s Law has stalled - can’t just rely on 

more datacenter compute 
• Internet-of-Things is growing rapidly 

• Advances in hardware 
• Advances in ML 
• Advances in codesign tools 

• But, we have even harder problems 
than industry and other scientific 
applications - stimulates innovation!
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4. Existing work
• application: CMS HGCal ECON data encoder 

• tools: hls4ml for ML codesign of ICs 

• application: NNs for waveform processing  
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CMS HGCal data compression
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Trigger path stage
Number 
channels

bits/channel
Average Compression 

factor
Data rate*

# links* (10.24 
Gbps)

Raw data 6M 20 1 5 Pb/s 1M

Hardware reduction 1M 7 1 300 Tb/s 60k

Threshold selection 1M 7 7 40 Tb/s 9k

The task:

The concept:

https://arxiv.org/abs/2105.01683



CMS HGCal data compression
• QKeras used for quantization-aware training 

• Weights at 6b, but accumulations padded with 3b to be sure no saturation  
• More lower-precision outputs is better 

• for both high- and low-bandwidth scenarios, for full range of module occupancy 
• Adding weights to I2C ~doubles the area, but important for reconfigurability  

• Chip Fabricated!  Functionality and SEE tests complete, look out for papers/talks!
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Metric Simulation Target

Power 48 mW <100 mW

Energy / inference 1.2 nJ N/A

Area 2.88 mm2 <4 mm2

Gates 780k N/A

Latency 50 ns <100 ns



hls4ml
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https://github.com/fastmachinelearning/hls4ml 
https://github.com/fastmachinelearning/hls4ml-tutorial

https://github.com/fastmachinelearning/hls4ml
https://github.com/fastmachinelearning/hls4ml-tutorial
https://github.com/fastmachinelearning/hls4ml
https://github.com/fastmachinelearning/hls4ml-tutorial


Waveform Processing Using Neural Networks on Front End Electronics

❖ Optimized number of 
layers and neurons on 
hidden layers 

❖ Investigated effect of 
weight quantization on 
inferencing accuracy 

❖ Preliminary results are 
encouraging with 
acceptable inferencing 
accuracy
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Sampled 
Waveform

Sensor 
Response

FEE(Amplifier + 
Shaper + ADC)

Modelled in 
Mathematica framework

Neural 
Network

Sampled Waveforms

❑ Estimating peak 
amplitude for 
energy deposited 
on sensor

Neural network design methodology

S. Miryala et al 2022 JINST 17 C01039

MLP

CNN



Neural Network to ASIC Design
❖ Mean Absolute Error is 

calculated at each stage 
❖ Good match (< 1%), no loss 

of accuracy
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MAE

0.838

0.8395

0.841

0.8425

0.844

QKERAS HLS4ML CATAPULT

C++ to 
HDL 

Develop 
ML 

Algorithms

Python to 
C++

QKeras

HLS4ML 

RTL for 
custom ASIC 

Design

Catapult 

❑ Neural networks are synthesized in a commercial 65nm process 
❑ Bigger networks ! more area, increased power consumption 
❑ The networks has a latency of 3-5 clock cycles and throughput of 1 clock cycle

Fig. : Area and power comparison for different precision configuration 

S. Miryala et al., "Peak Prediction Using Multi Layer 
Perceptron (MLP) for Edge Computing ASICs 
Targeting Scientific Applications," 2022 23rd 
International Symposium on Quality Electronic Design 
(ISQED), 2022



5. Applications, design, technology
• System-level use-cases 

• Sensor-integrated AI 

• Readout electronics integrated directly with sensor (e.g. bump-
bonded, TSVs, etc.) 

• Typically for ADC, but AI could be before or after analog-to-digital 

• On-detector data compression/concentration 

• Digitized data needs to be further compressed or aggregated to 
satisfy data transmission constraints
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• A discussion of strategies for improving ML efficiency to enable lower latency 
• Designing new efficient ML architectures 
• NN & hardware co-design 
• Quantization 
• Pruning and sparse inference 
• Knowledge distillation 

• Other important ML topics for front-ends 
• Fault-tolerant, reliable ML 
• Domain adaptation & transfer learning 

• Reconfigurable architectures

Efficient ML
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Codesign and validation tools 
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https://arxiv.org/abs/2207.07958

Figure 6: The full implementation chain of the ECON-T autoencoder

advanced, sub-10-nm CMOS processes and holistic optimization of circuits, architectures,
and algorithms. It includes, for example, taking advantage of aggressive voltage supply
scaling [77], very deep pipelines and extensive data reuse in architectures [78], and lowering
the precision of weights and activations of the algorithms [79]. As a result, very com-
pact state-of-the-art neural networks, such as MobileNet based on 3.4M parameters and
300M multiply-and-add operations per inference [80], can now be fitted entirely on a single
chip. However, on all these fronts, advances are saturating and cannot rely on the falter-
ing Moore’s law. Advanced geometry nodes such as 28 nm and below are currently being
investigated for Phase III upgrades of HL LHC. A community driven e↵ort for modelling
radiation e↵ects led by INFN and CERN is currently underway. Similarly, for the fully
depleted 22 nm FDSOI process, Fermilab is developing cryogenic models at 4K with EPFL
and Synopsys. The back gate control available in 22 FDX allows digital operation at ultra
low supply voltages of 400 mV and below.

Beyond CMOS

For a more detailed review of beyond CMOS technologies, please see Ref. [29] and references
therein written by Dmitri Strukov – what follows here is a very reduced summary.

15



Emerging technologies
• Advanced technology nodes 

• 28nm → 22nm FDSOI/FDX → sub-10nm 

• Promising beyond-CMOS emerging technology proposals, including 
those based on emerging dense analog memory device circuits, are 
grouped according to the targeted low-level neuromorphic functionality. 
• Analog Vector-by-Matrix Multiplication 
• Stochastic Vector-by-Matrix Multiplication 
• Spiking Neuron and Synaptic Plasticity 
• Reservoir Computing 
• Hyperdimensional Computing / Associative Memory
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Deiana et al. Fast Machine Learning in Science

FIGURE 10 | Analog vector-by-matrix multiplication (VMM) in a crossbar

circuit with adjustable crosspoint devices. For clarity, the output signal is

shown for just one column of the array, while sense amplifier circuitry is not

shown. Note that other VMM designs, e.g., utilizing duration of applied voltage

pulses, rather than their amplitudes, for encoding inputs/outputs, are now

being actively explored see, e.g., their brief review in Bavandpour et al. (2018).

the memory devices can be reliably programmed, and the write
speed/energy are less critical. Additionally, VMM operations in
the inference of many neural networks could be performed with
moderate, less than 8-bit precision, without incurring accuracy
loss (Yang and Sze, 2019), which further relaxes requirements for
analog properties and permits more I-V non-idealities and noise.

The most advanced neuromorphic inference circuits
have been demonstrated with more mature floating-gate
transistor memory circuits. Up until recently, such circuits
were implemented primarily with “synaptic transistors" (Diorio
et al., 1996), which may be fabricated using the standard CMOS
technology, and several sophisticated, efficient systems were
demonstrated (Chawla et al., 2004; Hasler and Marr, 2013;
George et al., 2016). However, these devices have relatively
large areas (>103 F2, where F is the minimum feature size),
leading to higher interconnect capacitance and hence larger
time delays. More recent work focused on implementing
mixed-signal networks with much denser (∼40 F2) commercial
NOR-flash memory arrays redesigned for analog computing
applications (Bayat et al., 2015; Guo et al., 2017b). For example,
a prototype of a 100k+-cell two-layer perceptron network
fabricated in a 180-nm process with modified NOR-flash
memory technology was reported in Guo et al. (2017a).
It performed reliably, with negligible long-term drift and
temperature sensitivity, and reproducible classification of the
MNIST benchmark set images with ∼ 95% fidelity and sub-1-µs
time delay and sub-20-nJ energy consumption per pattern. The
energy-delay product was six orders of magnitude better than
the best (at that time) 28-nm digital implementation performing
the same task with a similar fidelity (Guo et al., 2017a).

Recent theoretical studies showed that neuromorphic
inference circuits could be also implemented with much denser
3D-NAND flash memories (Bavandpour et al., 2019, 2020;
Lee et al., 2019), projected to scale eventually to 10 terabits
per square inch density. In the long term, the most promising
are perhaps circuits based on metal-oxide resistive switching

random access (ReRAM for short, which are also called metal-
oxide memristors) (Yang et al., 2013; Yu, 2018), especially
their passively integrated (0T1R) technology variety (Kim
et al., 2019). Indeed, due to the ionic switching mechanism,
ReRAM devices with dimensions below 10 nm still retain
excellent analog properties and year-scale retention (Govoreanu
et al., 2013). Furthermore, a low-temperature fabrication
budget allows monolithic vertical integration of multiple
ReRAM crossbar circuits, further increasing effective density
(Adam et al., 2017). There has been rapid progress in scaling
up the complexity of ReRAM-based neuromorphic circuit
demonstrations over the past several years (Prezioso et al.,
2015; Bayat et al., 2018; Hu et al., 2018b; Kim et al., 2019; Lin
et al., 2020b; Liu et al., 2020b; Yao et al., 2020a). However, the
ReRAM technology is still in much need of improvement. In
addition to high device variations, another remaining issue is
high write currents and operating conductances, which must
be decreased by at least one order of magnitude to reduce
the significant overhead of peripheral circuits (Kim et al.,
2019).

The device requirements for training hardware accelerators
are different and much more stringent. For instance, long
retention is not required because weights are frequently
updated. That allows using volatile memories in analog VMM
circuits, such as interfacial memristors based on electron
trapping/detrapping switching (Chu et al., 2014; Sheridan
et al., 2017; Cai et al., 2019a) and solid-state-electrolyte
memories (Fuller et al., 2019; Berggren et al., 2020; Yeon et al.,
2020), or even capacitor-based memories controlling current
via crosspoint transistors (Ambrogio et al., 2018). However,
the toughest challenge is much higher computing and weight
precision required for training operation and the need for
efficient schemes for weight updates, which in turn necessitate
drastically tighter device variations. The additional related
requirement is that the change in device conductance upon
applying the write pulse should not depend on its current state
(the so-called linearity of update property). Otherwise, accurate
conductance adjustment would require sending a unique write
pulse based on the current device state, which would be hardly
compatible with fast (in parallel) weight update.

Phase change memories have also been investigated as
candidates for variable resistors in analog VMM circuits (Burr
et al., 2015; Joshi et al., 2020), though their main drawback
is significant drift in the conductive state over time. High
write endurance, high density (with vertical 3D-NAND-like
integrated structure), and long retention are demonstrated in 1T
Ferroelectric RAM devices. There is much excitement about such
devices’ applications in training and inference accelerators (Ni
et al., 2018), though their analog properties are probably inferior
to ReRAM. The significant drawbacks of magnetic devices, such
as magnetic tunnel junction memories, are smaller on/off current
ratios, insufficient for practical VMM circuits, and poor analog
properties for scaled-down devices (Grollier et al., 2020).

The potentials of using light for implementing fast and large-
fanout interconnect and linear computations, such as multiply-
and-add operation, have motivated photonic neuromorphic
computing research (Hamley et al., 2019; Berggren et al., 2020;

Frontiers in Big Data | www.frontiersin.org 36 April 2022 | Volume 5 | Article 787421



Promote interdisciplinary collaborations  
physicists, computer scientists, electrical and computer engineers,  

software engineers, and industry

Parting thoughts
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Open data, task-based, and data-based benchmarks

Build open-source, multi-technology codesign workflows

Novel ML research concepts: efficient, fault-tolerant, reliable, domain adaptation

Support ecosystem integration and operation 

Explore novel microelectronics technologies

**Strong connections with IF04, CompF3, CompF4 can help amplify the messages within Snowmass
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