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ABSTRACT

Cutting edge detectors push sensing technology by further improving spatial and
temporal resolution, increasing detector area and volume, and generally reduc-
ing backgrounds and noise. This has led to a explosion of more and more data
being generated in next-generation experiments. Therefore, the need for near-
sensor, at the data source, processing with more powerful algorithms is becoming
increasingly important to more efficiently capture the right experimental data,
reduce downstream system complexity, and enable faster and lower-power feed-
back loops. In this paper, we discuss the motivations and potential applications
for on-detector AI. Furthermore, the unique requirements of particle physics
can uniquely drive the development of novel Al hardware and design tools. We
describe existing modern work for particle physics in this area. Finally, we out-
line a number of areas of opportunity where we can advance machine learning
techniques, codesign workflows, and future microelectronics technologies which
will accelerate design, performance, and implementations for next generation
experiments.
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2. Science drivers

 Scientific discoveries are enabled by
probing nature at higher spatial and
temporal precision

» Results in rapidly growing scientific data
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2. Science drivers 458

- Extreme environments in HEP experiments (power, rate, radiation, cryo,...)

« Al in near-detector electronics is hatural evolution

» can be a driver for progress in other scientific domains

e Benefits:

- ML algorithms can enable powerful and efficient non-linear data reduction or feature
extraction techniques, preserves the physics content that would otherwise be lost;

- Reduce the complexity of down stream processing systems and transmit less overall

information

- Enables real-time data filtering and triggering which would otherwise not be possible
or be much less efficient; or in the case of cryogenic systems, creates less data
bandwidth from cold to warm electronics and thus reduce the system complexity;

- Enable faster feedbackloops - e.g., ir

part of control or operations loop such
accelerators
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uantum information systems or particle



3. Community needs

e Thisis not a new idea :)

Snowmass 2021

https://cds.cern.ch/record/1732048
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ware of a high energy physics experi-

ment

The first such application comes
from a recent Fermilab test beam
experiment, where a VLSI neural
network chip was interfaced to the
data acquisition system of a proto-

type drift chamber. Drift ime informa-

tion from the sense wires, encoded
as voltages, was passed to the
neural network, which calculated the
slope and intercept of the track
traversing the chamber and semt this
information back to the mother

readout board to be read out with the

rest of the event, without any dead
time.

Neural network hardware i also
finding its way into other trigger
systems. The CDF experiment has
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three neural network tnggers in place
for its 1992 run: an isolated endplug
elactron tngger, an isolated central
photon trigger, and a semileptonic B

particle trigger.

Also at Fermilab’s Tevatron colhkder,
a group in the DO experiment is
studying the use of neural networks
in the muon trigger for the DO Muon
Upgrade. A neural network trigger for
H1 at DESY has been under devel-
opment for some time and will be
tested in the current run. Several
R&D projects at CERN are looking at
the feasibility of neural networks for
LHC experiment trigger systems,

Another application of neural
networks under study s in adaptive
control systems for accelerators. A
group at SLAC recently simulated
how a neural network control system
could be trained both to emulate and
control a section of beamiine.

These new artificial intelligence
techniques could go on o play an
important role in the acquisition and
analysis of experimental data for the
coming generabion of proton
colliders.

From Bruce Denby and Clark
Lindsey (Fermilab) and Louis Lyons
(Oxforad)




3. Community needs

e Thisis not a new idea :)

- What's changed? s )
 Broader necessity go
« Moore's Law has stalled - can't just rely on c‘;
more datacenter compute % o
 Internet-of-Things is growing rapidly Z
106

« Advances in hardware
« Advancesin ML
« Advances in codesign tools 10°

- But, we have even harder problems

than industry and other scientific 195

applications - stimulates innovation!
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4. Existing work

 application: CMS HGCal ECON data encoder
» tools: hls4ml for ML codesign of ICs

 application: NNs for waveform processing



The task:

Raw data

Trigger path stage

Hardware reduction

Threshold selection

The concept:

AN

Convolutional + Dense

CMS HGCal data compression
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https://arxiv.org/abs/2105.01683
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« QKeras used for quantization-aware training
» Weights at 6b, but accumulations padded with 3b to be sure no saturation

» More lower-precision outputs is better
« for both high- and low-bandwidth scenarios, for full range of module occupancy
- Adding weights to I12C ~doubles the area, but important for reconfigurability
o Chip Fabricated! Functionality and SEE tests complete, look out for papers/talks!

Metlric Simulation Target
Power 48 mW <[00 mW
Fnerqy / inference 12 n] N/A
Area 288 mm? <4 mm?
Gates 780k N/A
Latency 50 ns <I00 ns
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his4ml
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N L .
AL GORITHM n l' ¢ hlsdml S|mpI|f.|es the design of ML gcce_lerators
o | his4ml directives | << | HLS directives |
DEVELOPMENT . . . e
- ML Model o C++ library of ML functionalities optimized for HLS
&,Tralrlnng *
bl 4 ml — B ECON
onee: . [— > IS & M L AUTOENCODER
v, o TMR4sv hls
% [ el e crion Directives -
hlsdml « 1 2ar § 4 <100 sem Doy
Directives : L% ks =2t
Bl S TED
Ol %000 : o -
Performance \/_ 7 RTL
CH+ Hardware GDSI
Specification  Technology Library Implementation(s)
https://github.com/fastmachinelearning/hls4m
https://github.com/fastmachinelearning/hls4ml-tutorial
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https://github.com/fastmachinelearning/hls4ml
https://github.com/fastmachinelearning/hls4ml-tutorial
https://github.com/fastmachinelearning/hls4ml
https://github.com/fastmachinelearning/hls4ml-tutorial

Waveform Processing Using Neural Networks on Front End Electroni&1

Neural network design methodology
o 12 d Estimating peak
Sensor FEE(Amplifier + o' ° Neural 100 - '
ool o) I e I B
Modelled in Sampled = on sensor
Mathematica framework Waveform =i
MLP

Fully Connected
Network or MLP

** Optimized number of

Qkeras
. N LV NN SN 035 layers and neurons on
A I\ AL e e e e g 029 hidd |
, - Y AN RN 5 022 . idden layers
. ‘ ‘_\ < -:.‘, ‘___;_ . . . .
AN AL 2 7 &) | " e e s % |nvestigated effect of
Qkeras weight quantization on
T F D N inferencing accuracy
’\.‘ M‘. ‘\‘ w Y- ® . .
I LA WL SIS EL CNN 3 016 I I % Preliminary results are
0.145 .
0.13
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S. Miryala et al 2022 JINST 17 C01039

encouraging with
acceptable inferencing
accuracy
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Neural Network to ASIC Design b,

Develop MAE
A 'V'.tLh - QKeras 0844 < Mean Absolute Error is
gOFI = 0.8425
- calculated at each stage
_ 0.841 o o
e I * Good match (< 1%), no loss
- HLS4ML - I of accuracy
| QKERAS HLS4ML CATAPULT
18 1600
B CatapUIt 15 1400
1200
12 1000
t 9 ; 800
€ ] 600
400
3 - 200
\_ _ ) ° 4|4 4|-54|8 6|4 6|6 6|8 8|4 8|6 8|8 ’ 4|4 4|6 4|8 6|4 6|6 6|8 8|4 8|6 8|8
| l M Tiny (8) ™ Small(16) = Medium (36) Large (52) M Tiny (8) mSmall (16) = Medium (36) Large (52)
v Fig. : Area and power comparison for different precision configuration
d Neural networks are synthesized in a commercial 65nm process S. Miryala et al., "Peak Prediction Using Multi Layer
_ _ _ Perceptron (MLP) for Edge Computing ASICs
< Bigger networks = more area, increased power consumption Targeting Scientific Applications," 2022 23rd

International Symposium on Quality Electronic Design

d The networks has a latency of 3-5 clock cycles and throughput of 1 clock cycle  (5QFD). 2022
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5. Applications, design, technology

« System-level use-cases
« Sensor-integrated Al

- Readout electronics integrated directly with sensor (e.g. bump-
bonded, TSVs, etc.)

- Typically for ADC, but Al could be before or after analog-to-digital
« On-detector data compression/concentration

 Digitized data needs to be further compressed or aggregated to
satisfy data transmission constraints

13
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Efficient ML

e A discussion of strategies for improving ML efficiency to enable lower latency
» Designing new efficient ML architectures
- NN & hardware co-design

o Qua ntl Zation 4 I /Sensitivity: Flat vs. Sharp Local Minima )
. Pruning and sparse inference - ;
. Knowledge distillation -
« Other important ML topics for front-ends |~ ®
e Fault-tolerant, reliable ML It Al _
- Domain adaptation & transfer learning = o oo ’ g

« Reconfigurable architectures

14
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Codesign and validation tools

https://arxiv.org/abs/2207.07958

Model Training
HLS project: TF/Keras ras
’ h IS 4 m I 9 Xilinx Vivado HLS, Intel Quartus HLS, / /QKe Stimuli
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Emerging technologies

- Advanced technology nodes
e 28nm — 22nm FDSOI/FDX — sub-10nm

« Promising beyond-CMOS emerging technology proposals, including
those based on emerging dense analog memory device circuits, are
grouped according to the targeted low-level neuromorphic functionality.
- Analog Vector-by-Matrix Multiplication S
. Stochastic Vector-by-Matrix Multiplication ®+}G
. Spiking Neuron and Synaptic Plasticity @}GJ

» Reservoir Computing } ] --!-NGV
G z=“ i

- Hyperdimensional Computing / Associative Memory 3 G EEN

FIGURE 10 | Analog vector-by-matrix multiplication (VMM) in a crossbar
circuit with adjustable crosspoint devices. For clarity, the output signal is
shown for just one column of the array, while sense amplifier circuitry is not
shown. Note that other VMM designs, e.g., utilizing duration of applied voltage
pulses, rather than their amplitudes, for encoding inputs/outputs, are now
being actively explored see, e.q., their brief review in Bavandpour et al. (2018).
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Parting thoughts

Promote interdisciplinary collaborations

physicists, computer scientists, electrical and computer engineers,
software engineers, and industry

Build open-source, multi-technology codesign workflows

~
_J

Novel ML research concepts: efficient, fault-tolerant, reliable, domain adaptation

-
-

Explore novel microelectronics technologies

Open data, task-based, and data-based benchmarks

Support ecosystem integration and operation

**Strong connections with IFO4, CompF3, CompF4 can help amplify the messages within Snowmass -






