flicroelectronics

* New RF microelectronic platforms will catalyze new ways some HEP
experiments are done

* Mass deployment of wireless devices in the commercial sector is driving
rapid product development: datacomm (cellular, WiFi, 10T, satcomm),
location services (GNSS), radar (defense, aviation, auto, weather)

*Drivers are low cost, power, volume, and efficient use of bandwidth
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ground

Prior to 2018, two bottlenecks stood in the way of fully-
digital processing of high bandwidth, high dynamic range
signals. First, ADC performance (as measured on the
speed/resolution plane) was barely adequate to acquire
multi-GHz signals at Nyquist rate, having only a few bits of Discrete ADCs
resolution. o 2016
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Therefore, heterodyne techniques involving costly, sensitive
analog preconditioning circuitry (mixers, local oscillators,
quadrature couplers, etc.) were used to translate signals
down to intermediate frequencies for lower-rate digitization.

fs (samples/sec)

2018: introduction of Xilinx Ultrascale+ RFSoC.
Multiple, high-rate ADCs & DACs in 14nm
CMOS with rich fabric of fast programmable
logic, memory, & quad-core ARM processors.
ADCs sampling speed/resolution/power FOM
exceeding state-of-the-art discretes.

— Enabled ‘software-defined radio’ (digital
processing at RF rates replacing analog
conditioning)

= Order-of-magnitude reduction in PCB
development time

Second, the interface that transfers digitized data between
the high-speed ADC and first-stage digital processor became
complex and power-consuming, and required expert circuit
layout techniques to avoid timing errors. The cost and design
effort to realize high-bandwidth, high-resolution digital
processors relegated them to specialty markets.



orm characteristics

* Combination of GHz-bandwidth data converters, abundant FPGA :
resources, and streaming 1/O make them attractive for research il N 3 kB
instrumentation.

® Several vendors now offer the RFSoC chips on compact form- s o =%
factor modules with turnkey base firmware and a variety of custom
IP for typical applications. Performance and number of resource
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2022, each time increasing the maximum ADC sampling rate by
>14%, and further improvements are expected as new sub-10nm
CMOQOS process nodes become available. Versal Al RF ACAP
2023.
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1. Sensing RF

Legacy HEP instrumentation centers around sensors and readout
electronics for ionizing radiation

* Recently-proposed experiments need to sense or control EM radiation In
the RF range, acquiring and/or controlling information using the classical
properties of the EM field (frequency, phase, polarization)

emission from
naturally-occurring
sources

Cosmological 21cm
emission from neutral
hydrogen

Askaryan radiation from
neutrino interactions in
polar ice

2. Probing resonant

systems
» Haloscope-based search
for wavelike dark matter
* Manipulation of
superconducting qubits

information on

microwave carrier

* Highly-multiplexed
readout of
superconducting TES
and MKID detectors

« Streaming readout

3. Highly-multiplexed
transmission of analog

4. Machine control and

diagnostics

« Beam position monitors

* Synchronization of
accelerator and detector
timing



g RF emission from naturally-occurring so

Large scale structure via 21cm Intensity Mapping: tomographic reconstruction of the density field
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A concrete example: Packed Ultrawideband
Mapping Array (PUMA)

» A next-generation cosmic survey using intensity mapping of the 21-cm emission from
neutral hydrogen
* Proposal submitted to the ASTRO2020 Decadal Survey and Snowmass LOI call
» |nfterferometric array of 32,000 (5,000) six-meter dishes closely packed
» Redshift range 0.3 <z < 6 corresponding to 1100 < v <200 MHz
» Primary science goals:
= Probing physics of dark energy in the pre-acceleration era
= Searching for signatures of inflation
= Probing the transient radio sky (fast radio bursts and pulsars)

MA

packed ulfra-wideband mapping array

-

ASTRO2020 decadal survey whitepaper:
https://arxiv.org/pdf/1907.12559.pdf




Radio detection of neutrinos is possible
through the Askaryan effect, where particle
showers in dense media (in this case polar
ice) cause nanosecond-scale radio pulses in
the frequency range between 30 MHz and 1
GHz. Consequently, fast, broad-band and
low-noise receivers and systems are needed
to efficiently detect the rare signals. Dozens
to hundreds of such receivers in an
interferometric phased array distributed
over a few square km are being proposed,
requiring cost- and power-efficient modules
having exquisite (sub-nanosecond) timing
precision to accurately reconstruct event
topologies. Experiments such as ARA,
ANITA,and ARIANNA have begun studying
the diffuse flux of astrophysical neutrinos
and candidate sources of extra-galactic
neutrinos.

ensing RF emission from naturally-occurring sources
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Typical superconducting qubit is designed with its transition energy in

dbing resonant structures: qubit control and reado

the order of a few GHz, and requires arbitrary and precise microwave

generation and detection for control and measurement.

As the number of qubits increases, the number of microwave channels
required increases linearly. Therefore, designing a qubit control
system that is scalable, compact and cost- effective, while maintaining

its precision, speed, and features, is imperative.

A basic qubit control system consists of DACs to generate the resonant
probe pulses and ADCs to digitize the analog signals that travel out

from the fridge.

Gustavo Cancelo’s group

Fermilab control and readout replaces
expensive commercial equipment and messy
cabling and discrete RF components.

Gen3 (RFSoC) : FNAL Readout and Control: Up to ~80 qubits/module (if FMUXed)
>1000 qubits/system RF inputs, outputs, LO, fast flux cont
FPGA+ADC+DAC+memory+interfaces high precision bias,

il

FNAL Gen3 electronics stakeholders:
*  U. Chicago: Davis Schuster lab.

* U Princeton: Andrew Hock lab.

* Fermilab: SQMS (A. Grassellino)

* Fermilab: QSC Thrust 3 (A. Chou) / \\ 7\ ] .
+  UCSB: Ben Mazin Lab. e /’ N <3t \ / ;“S“C’:ii:s‘gemems
*+  U.Perdue: Alex Ruichao Ma. ® / A O ; 8O-
*  IIT-FNAL: Rakshya Khatiwada. £ S PR ' D.Schusterlab
* Fermilab CMB MKIDs (B. Benson). = e sz 10300
* Fermilab DM MKIDs: Noah Kurimsky. " WA My
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https://doi.org/10.1103/PhysRevApplied.10.034040

a microwave carrier

Detector in an inaccessible location is constructed as
a set of resonators on a periodically-loaded
transmission line.

Each resonator is tuned to a discrete frequency.
Resonators are continuously excited by a comb
probe signal and the output spectrum is recorded.

Radiation event or flux causes a shift in the
amplitude, frequency, and/or phase of the
resonance.

=>» Simultaneous sensing of amplitude, position,
and timing.

=>» Single coax cable reads out O(1000) detector
elements.

Used with TES or MKID detector arrays, but can be

extended to enable frequency-multiplexing of room-

temperature streaming readout.

ghly-multiplexed transmission of analog informatio

(~$2M)

SLAC Space RFSoC board funded by NASA
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With exception of RFSoC, all components flight qualified

Previous tests of RFSoC and ssmular technology Xilinx parts suggest good radiation hardness

Firmware ported from ground-based evaluation board. Most building blocks already exist or are in development

Power supplies tested, performing functionality and performance tests

Signal Processing Bandwadth: ~120 MHz for Radio signals, optional 1.5GHz for Cherenkov transients

Receive (ADC’s). Transmit (DAC's) available for calibration

RFSoC
8X 4Gs/s 12-bit ADC, 8X 6.4 Gs/s 14-bit DAC
4x ARM cores, 930K FPGA logic celis

Fully integrated system
Digital and ADC / DAC clocks
4GB DDR3 memory
4GB boot and flash memory
All power supplies, takes 5V in
Spacewire interface
Supervisory system {o restart in the event of
upsets in the RFSoC
e Software In ARM cores for system loading

AR » and data streaming
1] ;:-'.ﬂ,.,'?"'-:""f":'-":'-' . SoﬂwafemC
N P TS N - Minimal libranes
~ RFSOC NO run-time memory a8ocation

. Power supplies




- Highly-multiplexed transmission of analog information
on a microwave carrier

Example: TES array with frequency-division multiplexing for high-
resolution x- and gamma-ray spectrometry (NIST).

Carrier
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- Highly-multiplexed transmission of analog information
n a microwave carrier

A)

| Example: MKID array with
RFSoC frequency-division
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microwave carrier

Convolution-based frequency domain
multiplexing (FDM) of pulse mode
radiation detectors uses a resonator
circuit to convert the detector pulse into a
damped sinusoid with unique frequency
which identifies the detector number. The
frequency-encoded signal from each
detector is combined into a single channel
by a fan-in circuit, which is then read
through a digitizer input channel. The
original detector pulse is finally recovered
from the digitized frequency-encoded
signal by deconvolution. This method is
dual of the modulation/demodulation
technique that is used to read out,

e.g., transition edge sensor bolometer
arrays for satellite applications

Mishra 20

Detector 1 |Detector 2

utput (mV)

Detector 3|

Resonator r1| | Resonator r2| | Resonator r3

resonator output — detector o

sample value

recovered detector
output (mV)

(mV)

nme(us) PRI

" 50M 55MIH  60KH

Zj Z Z

Fan-in

(ADC units)

) tirﬁe (-;.is) b

Digitizer

%y(n)

Discrete Fourier
Transform

Y Y(k)

[ .

Deconvolution

t|me(us) B )

ighly-multiplexed transmission of analog information

plastic

L]

3 #3
1. | ;PM ,

scint.illator

Vbias input y

RESONATOR

Vin (an$ Vout (sinusoid)

pulse)

== original pulse 400 A — i
10000 A recovered pulse reskiua)
8000 - 11200 200 A
6000 - 11000
0 -
4000 A 10800
2000 - 19 20 21 2 —200 -
0 -
-400 -
50 100 0



https://www.sciencedirect.com/topics/physics-and-astronomy/sine-wave
https://www.sciencedirect.com/topics/physics-and-astronomy/deconvolution
https://www.sciencedirect.com/topics/physics-and-astronomy/bolometer

ne control and diagnostics

RFSoC in HL- Beam Position Monitoring System Beam Control AFCZ Card for SPS LLRF Upgrade
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B RfSOC BxB Sampled Signal

* RFSOC sampled data (5 GSPS)
* Output from Hybrid box with external 560MHz LPF
*® 10 Samples per RF bucket (200ps / sample)
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ectrum at high redshift

The global (i.e., sky-averaged) spectrum of the redshifted 21 cm line has the potential to be a direct probe

of the epoch before the first stars and galaxies formed, when the absence of astrophysical processes

simplifies the physics.

« Standard cosmological model provides robust prediction of the evolution of the spin temperature
(emission/absorption of 21cm from neutral hydrogen) during this epoch.

* In 2018, anomalous 21cm absorption profile at z~17 was observed at 3.8c disagreement with maximum
allowed by ACDM, hinting at new physics.

Further robust 21 cm detection can constrain the proposed theoretical explanations.
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m techniques, one needs to contend with strong foreground emission from our galaxy. A large part of the program is centered on foregro
ccurate subtraction. At some wavelengths there is also significant transient RFI from anthropogenic sources. oelectronics



