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SiD TDR Design Based on Analog Silicon Pixels
❖ SiD ILC TDR ECal design successfully tested in 9 layer SLAC beam test.

❖ 13 mm2 pixels on 6 inch wafers
❖ 1024 pixels per wafer
❖ KPiX readout bump-bonded to sensor

New development to improve design based on 25 μm x 100 μm digital MAPS.
Calorimetry application largely emphasizing Particle Flow Analysis. 2

arXiv:1306.6329 [physics.ins-det]
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EMCal HCal 
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Large area MAPS for SiD tracker & ECal
Benefits of large-area MAPS: 
• Standard CMOS foundry, low resistivity: cost ⇩  
• Sensing element and readout electronics on same die 

• In-pixel amplification: noise ⇩, power ⇩  
• No need for bump-bonding: cost ⇩  

• Area > 10x10 cm2 à enable O(1) m2 modules  

Several design challenges: 
• Large on-die variations, mismatch 
• Yield 
• Stitching layout rules 
• Distribution of power supply 
• Distribution of global control signals/references

Goals of R&D: find solutions and 
explore novel design techniques

An example of the SiD Tracker and the ECal overall design

MAPS

L. Rota
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Model of longitudinal structure of SiD ECal
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   Total = 27 XO

Incident Particle   HCAL 
Minimize sampling 
gap to achieve 
optimal Moliere 
radius and shower 
separation

20 layers of 2.243 mm W 
+ 1 mm sampling gap

10 layers of 4.486 mm W 
+ 1 mm sampling gap

   20 GeV γ average profile



TID-AIR
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Main specifications for Large Area MAPS development
Parameter Value Notes
Min Threshold 140 e- 0.25*MIP with 10 µm thick epi layer
Spatial 
resolution 7 µm In bend plane, based on SiD tracker 

specs
Pixel size 25 x 100 µm2 Optimized for tracking
Chip size 10 x 10 cm2 Requires stitching on 4 sides

Chip thickness 300 µm <200 µm for tracker. Could be 300 µm 
for EMCal to improve yield.

Timing 
resolution (pixel) ~ ns Bunch spacing: C^3 strictest with   

5.3->3.5 ns; ILC is 554 ns
Total Ionizing 
Dose 100 kRads Total lifetime dose, not a concern

Hit density / train 1000 hits / 
cm2

Hits spatial 
distribution Clusters Due to jets 

Balcony size 1 mm Only on one side, where wire-
bonding pads will be located.

Power density 20 mW / cm2 Based on SiD tracker power 
consumption: 400W over 67m2 

SiD Tracker and the ECal

MAPS

L. Rota

25 x 100 µm2 
ECal performance  

same as  
50 x 50 µm2



Power during integration phase
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 Readout  Integration  ReadoutAcquisitionPhase:  

• Avg power reduced by power-cycling  … but peak current draw is not!   current draw ~16 A 
• à significant voltage drop 

Possible strategies: 
• Bypass caps; EMCal flat cable distributes power; Re-distribution layer; more/thicker metal layers. 

Need to investigate strategies on how to cope with shorts: L. Rota

Power during readout phase
Asynchronous readout logic with zero-suppression: 

• Only pixels with HIT information read out.  power ⇩ 
• Remove clock à power ⇩ 

 Readout
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Large area MAPS: next steps

• SLAC working in WP1.2 collaboration at CERN 
• ALICE ITS3 upgrade main driver 

• Design 1.5x1.5 mm2 prototype with few pixels to test sensor + front-end 

• Submission of first prototype in 2022 
• Small-scale prototype in late 2022 

  

• Study sensor performance on TowerSemi 65 nm process 
• TCAD simulations to optimize sensor design 
• Feedback from WP 1.2 measurements done at CERN 

• Study bunch-tagging strategy (linear collider specific) 
• Analog-based: ramp, with low-res ADC in balcony (~8 bits) 
• Digital-based: local DLL for Time-to-Digital Conversion 

L. Rota
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Gap Structure with MAPS

ONE CABLE IN GAP DESIGN 

Gap structure with MAPs on one cable 
(or pcb).  Requires bump bonding

9M. Breidenbach
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Sampling Gap Simulation - SiD MAPS Digital ECal
                                        Geant4 simulated silicon gap structures
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Assumption: 
   Pixel threshold = 
      1 keV ≈ 270 e’s 
Future: 
   More detailed  
        gap model

2.243 mm 
W

200 um 
& 

12 um 

silicon

2.243 mm  
W

394 um 
Air 

394 um 
Air 

1 mm Typical hits distribution
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Multi-shower of SiD MAPS compared to SiD TDR 
40 GeV π0 → two 20 GeV γ’s

 SiD TDR hexagonal sensors                                New SiD fine pixel sensors
             13 mm2 pixels                                                     25 μm x 100 μm pixels

11
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40 GeV π0 → two 20 GeV γ’s

12

Y (25 um) Z (100 um)

Radius Symmetry plane

Vertical bin

400 um



J. 
Br

au
  -

 1
9 

Ju
ly

  2
02

2
Si

D
 D

ig
ita

l E
C

al
 b

as
ed

 o
n 

Si
lic

on
 M

A
PS

Performance simulation - Overview 
Geant4

❖ Linearity
❖ Energy resolution

❖ Ideal - count mips - sets unreachable goal
❖ Simplest approximation to mips - count digitized hits
❖ Improvement - count clusters of hits - reduce fluctuations
❖ Optimized - apply weights cluster counts from cluster properties

❖ Localization
❖ Multiple shower separation

❖ Note - SiD’s 5 T B field degrades resolution ~5%
13
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Linearity of response (counting hits in γ showers)

Few percent non-linearity due to differing response and counting 
in thin (0.7  X0) and thick (1.4 X0) layers (and uncorrected leakage).

14

10 GeV

20 GeV

50 GeV

2 GeV

10 GeV
20 GeV

50 GeV

2 GeV

Geant4 simulation

Hits are count 
of active pixels

Pixel hit threshold  
   = 1 keV = 270 e’s
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Hits resolution - count active pixels

ILC TDR anticipates    for the SiD SiW ECal; but we can do better.17 %

E
⊕ 1 %

15

Pixel hit threshold  
   = 1 keV = 270 e’s

20 GeV γ 
B=5T

18 %

E

19 %

E

Geant4  
simulation

10 GeV γ 
B=5T
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Pixel counts (hits & mips) - 20 GeV γ (B=5T)

Ultimate goal is to count mips based on hit distribution.
Potential to improve resolution compared to hit count. 16

Mip threshold = 0.1 MeVPixel hit threshold  
   = 1 keV = 270 e’s

16.4 %

E
⊕ 2.0 %

9.8 %

E
⊕ 1.1 %

Hits Mips

Note - mip is 
recorded once 
in pixel it first 
passes through.
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Hits appear in clusters (size 1, 2, 3, 4,…)

Cluster definition:  
Collection of hits 
in contact

17

Many clusters have 1 mip 
   (black -  first appearance of mip)

20 GeV γ
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Mips per cluster

18

20 GeV γ

1 mip2 mips

3 mips 0 mips

Mip = 1 or 0 dominate;
many clusters contain 
more than 1 unique mip

Cluster definition:  
Collection of hits in contact
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Cluster summary (20 GeV γ)

19

Yellow - hit w/o mip 
Others - 1 or more mips

20 GeV γ20 GeV γ

Cluster count is closer to mip count, reducing fluctuations from multiple hits.

Cluster definition:  
Collection of hits in contact
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Energy resolution from counting clusters

Improved compared to hit resolutions:

                          16.4 %

E
⊕ 2.0 %

20

20 GeV γ 
B=5T

10 GeV γ 
B=5T

But, cluster properties can  
be used to improve more.

13.7 %

E
⊕ 2.0 %

Cluster definition:  
Collection of hits in contact
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Mips/cluster and shower radius dependence
Cluster details “sense” number of mips:

Postion (radius from shower axis);
Cluster size.

Analysis using these parameters improves 
cluster resolution in our studies.

21

20 GeV γ

10 GeV electron 
All cluster sizes

Mips/cluster vs. Radius from shower axis

Average mips vs.Cluster Size

Mips/cluster vs. Radius from shower axis

10 GeV electron 
Size 4 clusters

R in 25 um units R in 25 um units
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Clusters weighted by radius & size

22

50 GeV γ

σE /E =
12.8 %

E
⊕ 1.4 %

When cluster properties 
are taken into account 
with weighting, 
performance improves.
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Resolution vs. Energy (hits/clusters/mips)

23

3 %

Resolution vs. Energy 
(hits    and     mips)  

 16.4 % / E ⊕ 2.0 %
9.8 % / E ⊕ 1.1 %
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Resolution vs. Energy (hits/clusters/mips)

24

3 %

Resolution vs. Energy 
(hits/clusters/mips)               
    

Simple cluster 
performance is better 
than hit counting.

 
 

16.4 % / E ⊕ 2.0 %
13.7 % / E ⊕ 2.0 %
9.8 % / E ⊕ 1.1 %
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Resolution vs. Energy (hits/clusters/mips)

25

3 %

Resolution vs. Energy 
(hits/clusters/mips)   &  
weighted clusters.

Simple cluster 
performance is better 
than hit counting.

When cluster properties 
are taken into account 
with weighting, 
performance improves.

 
 
 

16.4 % / E ⊕ 2.0 %
13.7 % / E ⊕ 2.0 %
12.2 % / E ⊕ 1.4 %
9.8 % / E ⊕ 1.1 %
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Other performance offered by MAPS  
and demonstrated in Geant4 studies

❖ Precise location of EM showers.

❖ Multiple shower separation.

❖ Two nearby showers - excellent separation to few mm.

❖ Multiple nearby showers or showers/tracks. 

❖ excellent counting and measurement.

❖ Pi0 reconstruction in busy environment.

❖ Results demonstrate MAPS improvement.

26
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MAPS for SiD Tracking
Size similar to that described for SiD in the ILC TDR, 10×10 cm2 devices. 
Constructed by stitching 2 cm x 2 cm reticles. 
Exceptional granularity of 25 μm by 100 μm pixels, with 25μm in bend direction 
resolution of 25μm/√12 ≈ 7 μm without charge sharing. 
The 25μm pixel matches KPiX-readout, silicon-strip width of the SiD TDR design  
recently assembled, tested, and shown to achieve 7μm resolution†.
The depleted 10μm thick epi layer charge collection of the MAPS allows a 
minimum threshold of 1/4 MIP, ensuring high efficiency. 
The pixel nature provides vastly improved pattern recognition for track finding 
over the strip devices. 
For the endcaps, such a sensor would eliminate the need for two sensors in a small- 
angle-stereo configuration, reducing both the material budget and cost.

27
† J. Brau et al., “Lycoris – a large-area, high resolution beam telescope,” 2021 JINST 16 P10023,  
arXiv:2012.11495 [physics.ins-det]
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Ongoing effort 
Sensor development and shower analysis
Sensor development progressing.

Anticipating first small-scale devices later in 2022.
Shower performance studies advancing:

Various cluster features “sense” mip count in “large” clusters.
Cluster features improve performance:

Based on radial position in shower;
Based on longitudinal position in shower;
Based on shape of cluster.

Simulated energy resolution exceeds TDR performance.

28Reference: arXiv:2203.07626 [physics.ins-det]


