

Minfang Yeh^a and <u>Ren-Yuan Zhu^b</u>

arXiv: 2203.07154

a Brookhaven National Laboratory, Upton, NY 11973, USA b California Institute of Technology, Pasadena, CA 91125, USA

Marcel Demarteau^c, Sarah Eno^d, David Hitlin^b, Frank Porter^b, Richard Rosero^a, Randy Ruchti^{e+}, Jui-Jen Wang^{f+}

c Oak Ridge National Laboratory, Oak Ridge, TN37831, USA d University of Maryland, College Park, MD 20742, USA e University of Notre Dame, Notre Dame, IN 46556, USA

f University of Alabama, Tuscaloosa, AL 35487-0324, USA

+ Primary Contributors

July 19, 2022

Presented in the Snowmass Community Summer Study 2022, University of Washington, Seattle

2019 DOE Basic Research Needs Study on Instrumentation for Calorimetry

Priority Research Direction

PRD 1: Enhance calorimetry energy resolution for precision electroweak mass and missing-energy measurements

PRD 2: Advance calorimetry with spatial and timing resolution and radiation hardness to master high-rate environments

PRD 3: Develop ultrafast media to improve background rejection in calorimeters and improve particle identification

arXiv: 2203.07154 summarizes community response to the PRD Fast/ultrafast, radiation hard and cost-effective active materials

Inorganic Scintillators

• Precision photons and electrons enhance physics discovery potential.

• Crystal performance is well understood:

- The best possible energy resolution and position resolution;
- Good e/γ identification and reconstruction efficiency;
- Excellent jet mass resolution with dual readout,: C/S or F/S gate.

• Challenges at future HEP Experiments:

- Fast and radiation hard scintillators for the HL-LHC and FCC-hh;
- Ultrafast scintillators to break ps timing barrier & Mu2e-II ECAL;
- Cost-effective crystals for the proposed Higgs factory.

• Inorganic scintillators at Caltech Crystal Lab:

- Radiation hard LYSO:Ce and BaF₂ crystals, and LuAG:Ce ceramics;
- Ultrafast BaF₂:Y, Cs₂ZnCl₄ and Ga₂O₃ crystals, and Lu₂O₃ ceramics;
- BGO, BSO & PWO crystals, and heavy scintillating glasses.

arXiv:2203.06731/06788

Crystal ECAL Physics

Crystals damaged by both proton and neutron. Damage by proton is larger than that from neutrons because of ionization energy loss in addition to displacement and nuclear breakup

Proton Fluence (cm⁻²)

ntegrated Dose (rad

June 29, 2022

Ren-Yuan Zhu of Caltech HEP Crystal Lab for HEPCAT Board Meeting: TG5-Scintillators/Crystals

1 MeV n_{ee} Fluence (cm⁻²)

TO OLONHA

Challenge: Radiation Damage at LHC

Use materials with monotonic damage: BaF₂, CsI, LYSO:Ce, LuAG:Ce

http://www.hep.caltech.edu/~zhu/t alks/ryz_161028_PWO_mon.pdf

Presented by Ren-Yuan Zhu, Caltech, in the 2022 LANSCE User Group Meeting, Los Alamos, NM

Use Materials with no Damage Recovery

Damage in PWO recovers at room temperature, requiring frequent calibration/monitoring

> No recovery in BaF₂, CsI and LYSO:Ce crystals, and LuAG:Ce ceramics, indicating dose-rate independent damage.

6/2/2022 Pres

Presented by Ren-Yuan Zhu, Caltech, in the 2022 LANSCE User Group Meeting, Los Alamos, NM

LYSO:Ce for CMS Barrel Timing Layer

MTD performance goal: 30-40 ps at the start degrading to < 60 ps at 3000 fb⁻¹ Barrel Timing Layer: arrays of LYSO crystal bars connected to SiPMs at both ends and readout by TOFHIR Ultrafast inorganic scintillators would help to break the pico-second time barrier BTL: LYSO bars + SiPM read-out CMS ► TK / ECAL interface ~ 45 mm thick $|\eta| < 1.45$ and $p_T > 0.7$ GeV ► Active area ~ 38 m² ; 332k channels ► Fluence at 3 ab⁻¹: 2×10¹⁴ n_{eq}/cm² ETL: Si with internal gain (LGAD) ▷ On the HGC nose ~ 65 mm thick ► 1.6 < |η| < 3.0 ► Active area ~ 14 m²; ~ 8.5M channels ► Fluence at 3 ab⁻¹: up to 2×10¹⁵ n_{ea}/cm² LYSO + SiPM with Thermal Electric Cooler (TEC) for CMS Barrel Timing Layer (BTL) in construction Mockup 01-0021 SiPM array prototypes from FBK SiPM arrays mockup for TECs testing

July 19, 2022

LYSO Radiation Hardness

IEEE TNS 63 (2016) 612-619,

CMS LYSO spec: RIAC < 3 m⁻¹ after 4.8 Mrad, 2.5 x 10^{13} p/cm² and 3.2 x 10^{14} n_{eq}/cm²

Damage induced by protons is larger than that from neutrons Due to ionization energy loss in addition to displacement and nuclear breakup

July 19, 2022

LuAG:Ce Ceramics Radiation Hardness

IEEE TNS 69 (2022) 181-186

LuAG:Ce ceramics show a factor of two smaller RIAC values than LYSO:Ce up to $6.7 \times 10^{15} n_{eq}$ /cm² and $1.2 \times 10^{15} p$ /cm², promising for FCC-hh

R&D on slow component suppression by Ca co-doping, and radiation hardness by $\gamma/p/n$

July 19, 2022

RADiCAL: LYSO/LuAG Shashlik CAL

Mu2e-II BaF₂:Y Calorimeter

CsI+SiPM

Use ultrafast material to mitigate pile-up

Energy resolution	σ < 5% (FWHM/2.36) @ 100 MeV
Time resolution	σ < 500 ps
 Position resolution 	σ < 10 mm
 Radiation hardness Crystals Photosensors 	1 kGy/yr and a total of 10 ¹² <i>n</i> _1 MeV equivalent/cm ² total 3 x 10 ¹¹ <i>n</i> _1 MeV equivalent/cm ² total

Mu2e-I: 1,348 CsI of 34 x 34 x 200 mm³

Mu2e-II: 1,940 BaF₂:Y

Mu2e-II: arXiv:2203. 07596

PIP-II/Mu2e-II: higher rates (~x3) and duty factor from and correspondingly higher ionizing radiation (10 kGy/yr) and neutron levels (10¹³ n_1 MeV equiv/cm² total), which are particularly important at the inner radius of disk 1

Fast and Ultrafast Inorganic Scintillators

Snowmass 2022 White Paper: https://doi.org/10.48550/arXiv.2203.06788

	BaF ₂	BaF ₂ :Y	ZnO:Ga	YAP:Yb	YAG:Yb	β-Ga ₂ O ₃	LYSO:Ce	LuAG:Ce	YAP:Ce	GAGG:Ce	LuYAP:Ce	YSO:Ce
Density (g/cm³)	4.89	4.89	5.67	5.35	4.56	5.94	7.4	6.76	5.35	6.5	7.2 ^f	4.44
Melting points (°C)	1280	1280	1975	1870	1940	1725	2050	2060	1870	1850	1930	2070
X ₀ (cm)	2.03	2.03	2.51	2.77	3.53	2.51	1.14	1.45	2.77	1.63	1.37	3.10
R _M (cm)	3.1	3.1	2.28	2.4	2.76	2.20	2.07	2.15	2.4	2.20	2.01	2.93
λ _ι (cm)	30.7	30.7	22.2	22.4	25.2	20.9	20.9	20.6	22.4	21.5	19.5	27.8
Z _{eff}	51.6	51.6	27.7	31.9	30	28.1	64.8	60.3	31.9	51.8	58.6	33.3
dE/dX (MeV/cm)	6.52	6.52	8.42	8.05	7.01	8.82	9.55	9.22	8.05	8.96	9.82	6.57
λ _{peak} ^a (nm)	300 220	300 220	380	350	350	380	420	520	370	540	385	420
Refractive Index ^b	1.50	1.50	2.1	1.96	1.87	1.97	1.82	1.84	1.96	1.92	1.94	1.78
Normalized Light Yield ^{a,c}	42 4.8	1.7 4.8	6.6 ^d	0.19ª	0.36 ^d	6.5 0.5	100	35° 48°	9 32	115	16 15	80
Total Light yield (ph/MeV)	13,000	2,000	2,000 ^d	57ª	110ª	2,100	30,000	25,000°	12,000	34,400	10,000	24,000
Decay time ^a (ns)	600 0.5	600 0.5	<1	1.5	4	148 6	40	820 50	191 25	53	1485 36	75
LY in 1 st ns (photons/MeV)	1200	1200	610 ^d	28 ^d	24 ^d	43	740	240	391	640	125	318
LY in 1 st ns/Total LY	9.2%	60%	31%	49%	22%	2.0%	2.5%	1.0%	3.3%	1.9%	1.3%	1.3%
40 keV Att. Leng. (1/e, mm)	0.106	0.106	0.407	0.314	0.439	0.394	0.185	0.251	0.314	0.319	0.214	0.334

^a top/bottom row: slow/fast component; ^b at the emission peak; ^c normalized to LYSO:Ce; ^d excited by alpha particles; ^e ceramic with 0.3 Mg at% co-doping; ^f density for composition Lu_{0.7}Y_{0.3}AlO₃:Ce

July 19, 2022

CalVision: A Longitudinally Segmented Crystal ECAL

arXiv: 2203.04312, see the DR session for details

Followed by the IDEA DR HCAL, aiming at both EM and jet resolution

July 19, 2022

Presented by Ren-Yuan Zhu in the 2022 Snowmass Community Summer Study, University of Washington, Seattle

The HHCAL Concept

300

200

100 E

1000

800

A. Para, H. Wenzel and S. McGill in Callor2012 Proceedings and
A. Benaglia *et al.*, IEEE TNS **63** (2016)
574-579: a jet energy resolution at a level of 20%/√E by HHCAL with dual readout of S/C or dual gate.
M. Demarteau, 2021 CPAD Workshop

5x5 cm

10

Inorganic Scintillators for HHCAL

Snowmass 2022 White Paper: https://doi.org/10.48550/arXiv.2203.06788

	BGO	BSO	PWO	PbF ₂	PbFCI	Sapphire:Ti	AFO Glass	BaO·2SiO ₂ Glass ¹	HFG Glass ²
Density (g/cm ³)	7.13	6.8	8.3	7.77	7.11	3.98	4.6	3.8	5.95
Melting point (°C)	1050	1030	1123	824	608	2040	980 ³	1420 ⁴	570
X ₀ (cm)	1.12	1.15	0.89	0.94	1.05	7.02	2.96	3.36	1.74
R _M (cm)	2.23	2.33	2.00	2.18	2.33	2.88	2.89	3.52	2.45
λ _ι (cm)	22.7	23.4	20.7	22.4	24.3	24.2	26.4	32.8	23.2
Z _{eff} value	72.9	75.3	74.5	77.4	75.8	11.2	42.8	44.4	56.9
dE/dX (MeV/cm)	8.99	8.59	10.1	9.42	8.68	6.75	6.84	5.56	8.24
Emission Peak ^a (nm)	480	470	425 420	۸	420	300 750	365	425	325
Refractive Index ^b	2.15	2.68	2.20	1.82	2.15	1.76	١	١	1.50
Relative Light Output by PMT ^{a,c}	100	20	1.6 0.4	۸	2.0	0.2 0.9	2.6	5.0 4.0	3.3 6.1
LY (ph/MeV) ^d	35,000	1,500	130	١	150	7,900	450	3,150	150
Decay Time ^a (ns)	300	100	30 10	١	3	300 3200	40	180 30	25 8
d(LY)/dT (%/ºC) ^d	-0.9	?	-2.5	١	?	?	?	-0.04	-0.37
Cost (\$/cc)	6.0	7.0	7.5	6.0	?	0.6	?	?	?

a. Top line: slow component, bottom line: fast component.

b. At the wavelength of the emission maximum.

c. Relative light yield normalized to the light yield of BGO

d. At room temperature (20°C) with PMT QE taken out.

July 19, 2022

Presented by Ren-Yuan Zhu in the 2022 Snowmass Community Summer Study, University of Washington, Seattle

Low density crystals/glasses

THE REAL PROPERTY OF THE REAL

Organic, Liquid and Water-based Scintillators

- Plastic scintillator has modest cost (\$10s/kg) and scale-up accessibility
 - Polyvinyltoluene (PVT) and polystyrene (PS) are the base resins for fabrication

- New resins under development; 3D-printing can be employed to further reduce cost and labor request.
- A new thermoplastics acrylic scintillator to load scintillators and high-Z elements directly into acrylic monomers is under investigation; a multilayer acrylic detector coupling with SiPMs could provide excellent position and energy reconstruction.
- Liquid scintillator has low cost (\$1s/kg), fast timing (sub-ns) and adequate light-yield (10³ ~ 10⁴ ph/MeV)
 - New scintillator solvents enhance performance and improved chemical stability and compatibility with most plastics polymers have been developed for the neutrino frontier over the past decade.
 - Low density required loading high-Z elements at high mass fraction (capability~10%)
- Water-based Liquid Scintillator is novel for high-energy Cherenkov and low-energy scintillation detection
 - Bridging organic and water with long optical transparency (10s m) and more environmentally friend, enabling a broad physics program across a dynamic range from hundreds of keV to many GeV.
 - Low density required loading high Z elements (even more capable up to 30% and still has appreciable scintillation yield)
 - A 30T demonstrator is under construction at BNL to explore engineering parameters and scale-up performance of a kilotonscale detector for next-generation particle physics experiments.

Scintillator Comparison

Metal-doped Liquid Scintillators up to kton scale demonstrate the feasibility of

July 19, 2022

of high-Z doping				
Materials (noble gas not included)	LY (ph/MeV)	Cost ⁺ (per kg)	Decay Time (ns)	Comments
Inorganic Scintillators	140 - 63,000	\$1k-\$5k	Sub to 1,000s	High density, easy deployment, low optical, scale-up challenge for large volume application, e.g. HHCAL; RADiCAL uses WLS*
Organic Scintillator Plastics	1,000s	\$10s	1s	Medium density, easy deployment, m-optical, scale-up challenge (3D-print?), WLS*
(High Z-doped, 1s%) Organic Liquid Scintillator	9,000-14,000	\$1s	Sub	~10m-optical, low density (mitigated by high-Z?), large volume; WLS-doped
(High Z-doped, 10s%) Water-based Liquid Scintillator	1,000s	<\$1s	Sub	~10m-optical, low density (mitigated by high-Z?), environmentally-friendly, large volume, WLS-doped

1000

Channel

PROSPECT: Segmented Scintillator Lattice

WLS (fibers) bridging emission to photosensor are required for plastics; direct coupling (no WLS) used by crystal calorimetry

+ See slide 27 of http://www.hep.caltech.edu/~zhu/talks/ryz 210316 EIC Crystal CAL.pdf, for mass-produced crystal cost per cc.

Wavelength Shifter (WLS)

- WLS forms optical "bridges":
 - Connect scintillation light emission from crystal, ceramic or organic scintillators to photosensors
 - Located proximately (or directly) within a detector region if the photosensors are radiation tolerant to the levels needed
 - Remotely with fiberoptic connection as needed for radiation protection of the photosensors.
- WLS are spectrally matched to a given scintillator and photosensor:
 - WLS Excited by the scintillation emission
 - WLS Emit at a longer wavelength that is accessible to photosensors.
 - Can be placed strategically to provide selective measurements.
- WLS in capillary or fiber/filament form are particularly effective in EM calorimetry:
 - Energy Measurement
 - Fast-timing Measurement
 - Precision spatial measurement of shower position
 - All of the above are potentially possible in ultracompact EM Calorimetry Modules (example RADiCAL)
 - These structures have the potential for application in challenging radiation environments, e.g. FCC-hh.

WLS R&D for RADiCAL

Scintillator	Scintillator	Wavelength	WLS Emission	Photosensor
material	Emission	Shifters	Wavelengths	Possibilities
	Wavelength			
LYSO:Ce	425nm	DSB1	495nm	SiPM, GalnP, new
LYSO:Ce	425nm	LuAG:Ce	520nm	SiPM, GalnP, new
LYSO:Ce	425nm	Direct - No WLS		SiPM, new
LuAG:Ce	520nm	Quantum Dots	560-580nm	SiPM, GalnP, new
LuAG:Pr	310nm	pTP	360nm	SiPM, GalnP, new
		ТРВ	460nm	
		Flavenols	530-560nm	
LuAG:Pr	310nm	Direct - No WLS		SiC
CeF₃	330mm	pTP	360nm	SiPM, GalnP, new
		ТРВ	460nm	
		Flavenols	560nm	
CeF₃	330nm	Direct - No WLS		SiC
BaF ₂ :Y	220nm	Direct – No WLS		Diamond

Summary

- Future calorimetry requires fast, radiation hard and cost-effective material. Radiation-hard LYSO:Ce crystals and LuAG:Ce ceramics are proposed for an ultra-compact **RADiCAL** concept.
- A BaF₂:Y ultrafast crystal calorimeter is proposed for Mu2e-II.
- A segmented crystal ECAL with dual readout followed by the IDEA HCAL is proposed by **CalVision** for both EM and jet resolution for the Higgs factory. Homogeneous HCAL (HHCAL) promises the best jet mass resolution by total absorption. A critical issue is cost-effective mass-produced inorganic scintillator. Organic, liquid and water-based scintillators are very cost-effective, but have low density.
- **RADiCAL** has a plan for novel WLS.

Novel materials are needed for all these calorimeter concepts

Acknowledgements: DOE HEP Award DE-SC0011925DE-SC0017810, DEAC02-98CH10886

July 19, 2022

Snowmass White Papers

Mass-Produced Crystal Cost (Mar 2019)

http://www.hep.caltech.edu/~zhu/talks/ryz_210316_EIC_Crystal_CAL.pdf

ltem	Size (R _M xR _M x25 X ₀)	1 m ³	10 m ³	100 m ³	Scaled to X ₀
BGO	22.3×22.3×280 mm	\$8/cc	\$7/cc	\$6/cc	1.23
BaF ₂ :Y	31.0×31.0×507.5 cm	\$12/cc	\$11/cc	\$10/cc	2.28
LYSO:Ce	20.7x20.7x285 mm	\$36/cc	\$34/cc	\$32/cc	1.28
PWO	20x20x223 mm	\$9/cc	\$8/cc	\$7.5/cc	1.00
BSO	22x22x274 mm	\$8.5/cc	\$7.5/cc	\$7.0/cc	1.29
Csl	35.7x35.7x465 mm	\$4.6/cc	\$4.3/cc	\$4.0/cc	2.09

CMS MTD: Expected Radiation

CMS BTL/EMEC: 4.8/68 Mrad, $2.5 \times 10^{13}/2.1 \times 10^{14}$ p/cm² & $3.2 \times 10^{14}/2.4 \times 10^{15}$ n_{eq}/cm²

CMS MTD	η	n _{eq} (cm⁻²)	n _{eq} Flux (cm ⁻² s ⁻¹)	Proton (cm ⁻²)	p Flux (cm ⁻² s ⁻¹)	Dose (Mrad)	Dose rate (rad/h)
Barrel	0.00	2.5E+14	2.8E+06	2.2E+13	2.4E+05	2.7	108
Barrel	1.15	2.7E+14	3.0E+06	2.4E+13	2.6E+05	3.8	150
Barrel	1.45	2.9E+14	3.2E+06	2.5E+13	2.8E+05	4.8	192
Endcap	1.60	2.3E+14	2.5E+06	2.0E+13	2.2E+05	2.9	114
Endcap	2.00	4.5E+14	5.0E+06	3.9E+13	4.4E+05	7.5	300
Endcap	2.50	1.1E+15	1.3E+07	9.9E+13	1.1E+06	26	1020
Endcap	3.00	2.4E+15	2.7E+07	2.1E+14	2.3E+06	68	2700

Much higher at FCC-hh: up to 0.1/500 Grad and $3x10^{16}/5x10^{18}$ n_{eq}/cm² at EMEC/EMF M. Aleksa *et al.,* Calorimeters for the FCC-hh CERN-FCCPHYS-2019-0003, Dec 23, 2019

July 19, 2022

Ultrafast and Radiation Hard BaF₂

 BaF_2 has an ultrafast scintillation component @ 220 nm with 0.5 ns decay time and a much larger slow component @ 300 nm with 600 ns decay time.

Slow suppression may be achieved by rare earth doping, and/or solar-blind photo-detectors

BaF₂ shows saturated damage from 10 krad to 100 Mrad, indicating good radiation resistance against γ-rays

 $\begin{array}{l} \text{BaF}_2 \text{ also survives after proton} \\ \text{irradiation up to } 9.7 \times 10^{14} \text{ p/cm}^2, \\ \text{ and neutron irradiation up to} \\ 8.3 \times 10^{15} \, n_{\text{eq}}/\text{cm}^2 \end{array}$

July 19, 2022

July 19, 2022

BaF₂:Y for Ultrafast Calorimetry

Increased F/S ratio observed in BGRI BaF₂:Y crystals: Proc. SPIE 10392 (2017)

285

Time (ns)

295

300

X-ray bunches with 2.83 ns spacing in septuplet are clearly resolved by ultrafast BaF₂:Y and BaF₂ crystals: for GHz Hard X-ray Imaging NIMA 240 (2019) 223-239

Presented by Ren-Yuan Zhu in the 2022 Snowmass Community Summer Study, University of Washington, Seattle

400

0 E

Gamma-ray Induced Readout Noise RIN:y

BaF₂ crystals wrapped by Tyvek with an air gap coupling to a Hamamatsu PMT R2059, were irradiated by Co-60 with dose rates of 2 and 23 rad/h

$$F = \frac{\frac{Photocurrent}{Charge_{electron} \times Gain_{SiPM}}}{Dose \ rate_{\gamma-ray} \ or \ Flux_{neutron}} \quad \sigma = \frac{\sqrt{Q}}{LO} \quad (MeV)$$

QE/PDE of four VUV photodetectors for BaF₂ and BaF₂:Y, IEEE TNS **69** (2022) 958-964

Cost-Effective Sapphire Crystals for HHCAL

Large sapphire crystal of 400-450 kg Prof. Xu Jun of Tongji University: Sapphire crystals by Kyropoulos (KY) technology A producer can grow 1,000 tons ingots annually with 400 to 450 kg/ingot Cost of mass-produced Sapphire crystals including processing: less than \$1/cc

	Weight (kg)	Size (cm)	Unit Price	Comment
ingot boule	400	Ф50×55	US\$12000/pc	for undoped
cutting/polishing	4	1×1×1	~US\$0.6/cc	for undoped

July 19, 2022

Sapphire:Ti Emission and Transmittance

A weak emission at 325 nm with 150 ns decay time A strong emission at 755 nm with 3 μ s decay time

ID	Dimension (mm³)	#	Polishing
Tongji Al ₂ O ₃ :Ti-1,2	10×10×4	2	Two faces
Tongji Al ₂ O ₃ :C-1,2	Φ7×1	2	Two faces
Tongji Lu ₂ O ₃ :Yb	6.4×4.8×0.4	1	Two faces
Tongji LuScO ₃ :Yb	Φ4.8×1.3	1	Two faces

July 19, 2022