Detecting Dark Matter with a
Superconducting Qubit

A.V. Dixit, et al., Phys.Rev.Lett. 126 (2021) 14, 141302
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photons into this “quantum RAM.”
« The resulting qubit frequency errors can be detected World record quantum sensor noise
with high fidelity quantum readout suppression 37x below the standard quantum
. limit for single microwave photon detection
DOE-OHEP QuantISED Consortium: 9 P

Quantum Sensing for Dark Matter « World-leading dark photon sensitivity
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Qubits are also ultra low threshold phonon and charge detectors

Aluminum superconducting gap = 104eV << 1 eV semiconductor band gap of silicon

a) Y, U =11 The "catastrophic event” is reconstructed
— |0) in both space and time using the pattern

of detected qubit errors
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100 keV energy deposit in silicon substrate

of Google Sycamore chip.
M. McEwen et al., Nature Physics 18 (2022)
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ce~TeRr lOWbackground underground test
stands to make more robust qubits and
better dark matter detectors.
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Fundamental Building Blocks of Nature

Sweet is b%convention Today: understanding the void

& bitter is y convention,
hot b convention,

cold y convention,
color ]33 convention, e
in truth there are but atoms and the void.
— Democritus (b. 460 BC)

s spacetime really smooth?

Holographic -
duality
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TR = N == DA R Figure: el A A % AN Inspiration:
i ek e I - GO R R Quanta Magazing“e/L NI Gubser (2017)

_______ — B - G ; ; : Gl e s :
........... f % > : o ,

...or do curved space & gravity

Macroscopic behavior emerges from , ,
emerge from discrete constituents?

microscopic configuration of atoms
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Quantum Gravity in Table-Top

Precision
Measurement

—xperiments?

Quantum Quantum

Engineering Slmulatlon

Holographic
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Quantum gravimeters & clocks

Build interacting quantum system
and probe correlations
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Analog gravity
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Massive quantum objects
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Holographic Quantum Simulation

Can curved space and gravity emerge from entanglement?

Inspiration: p-adic AdS/CFT Experiment:

Tree graph as discretized version of Cold atoms & photons
hyperbolic space (holographic bulk) [ = programmable interactions

Treelike bulk geometry emerges from measured spin correlations \
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Periwal, Cooper, Kunkel, Wienand, Davis & MS-S, Nature (2021).
Proposed in: Bentsen, ..., Daley, Gubser & MS-S, PRL (2019).
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Superconducting Quantum Materials and Systems Center
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SQMS Roadmap: a quantum decade leading to new revolutionary tools
Ay

100 qubits , O
Transmon qubit Quantum s Sl A
improvement in Computer @ controls development 1000 qubits Quantum
coherence > 10 Fermilab and scale up Computer @ Fermilab

Materials Research for ~ New quantum testbeds Colossal fridge Solving complex problems in HEP, CMP,
high coherence qubits commissioned fundamental physics commissioned 20mK medicine, climate, national security

o€ H
2¢ Fermilab
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SQMS theorists and experimentalist ‘co-design’ to develop new experiments

SRF + QIS capabilities enable new particle searches of unprecedented sensitivity and precision

R. Harnik

. Y. Kahn  P.Graham

A. Romanenko A. Berlin
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BERKELEY

Scrambling with ternary quantum logic

N

Black hole information Superconducting qutrit
paradox processor
)

Scrambling and
teleportation
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Nuclear physics simulations on AQT

Collaborative research Evolution of interacting
laboratory neutrons

Versatile Custom FPGA User project collaboration with

software stack controls Sofia Quaglioni, LLNL
[0)
1 N
Classical computer: 2 qubits, on 8Q ring:
Propagate spatial Propagate spin degrees
degrees of freedom of freedom

R )

Calculate spin state
occupation probabilities

Cryogenic Superconducting
platform processors

Probability

15 2 b3 0 »
Circuit number
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The paradigm of
quantum information

The connection between
quantum technology and
its scientific drivers

The promise of discovery
and innovation

H. Ritsch
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Connecting quantum technology
with its scientitic drivers

Modeling and simulation, data
mining and machine learning

Software, systems, tools and
techniques

Networks, workflows, interfaces
and infrastructure
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Krysta$S

Impactful applications require at least TM qubits

4 Materials science simulations
10M+

Technology leadership < Chemistry simulations

starts at 1M physical qubits M+
2 Cryptanalysis
= _ 1M-10M
9 Scientific understanding
g 50k+
<
1 10k 100k 108 107 108

Physical Qubits Required (estimated for 10-6 error rates)

© Microsoft 2022
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High-performance hybrid quantum computing

Quantum computers are an accelerator of future computational solutions.

2 C

Classical computers
generate Hamiltonian
parameters within

active space

Explore
catalyst
structures

A

7

. _ Obtain accurate
Exploring Nf:fr::)sé?f';ts Quantum energy using quantum
materials structure co.mptfter/quantum

q inspired solvers
an Y f .
Accurate predictions of industrial

structures metrics for catalysis
on Azure

Kinetic analysis Assf(:mble

two reaction €e
energy

pathways

PR Research 3, 0330555 (2021), Editor’s Choice

© Microsoft 2022
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Standard argument for quantum computers

10201 -
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Quantum computer
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But quantum computers can't solve all problems
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Need HEP problems where they shine
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Such transformational HEP problems exist

10201 -

These problems exist in many areas of HEP
collider physics, neutrino physics, cosmology,

_ 1016l early universe physics, quantum gravity etc
()
=
Do- 121
0 < - ﬁ
g
3 One important example:
= 1081 First principles (non-perturbative) simulation of
8 dynamics of QFTs, in particular SU(3)
1041

10!
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Need to spend the effort to study this in detail to
see if / how / when this can become a reality

Need to spend the effort to study this in detail
to see if / how / when this can become a reality
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SYoo BNL

HEP on Quantum Machine Learning (QML)

HEP Drivers ML Challenges
HL-LHC » High Volume
DUNE « High Velocity

Cosmology

* Sparse Data

ML success on HEP Quantum Machine Learning
Surrogate Models « Potential Quantum
Data Analytics (reconstruction, classification, Adva ntage

anomaly detection, ...) ] ]
« Exponential / quadratic

speed-ups

Data Compression
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HEP on Quantum Machine Learning (QML)

QML Limitations & Challenges QML Opportunities
Large qubit simulation slow e Better simulation SWs
QC Hardware « Bright roadmaps (IBM, lonQ,
o Limited qubit Google etc)
Noises I :
Short qubit coherence time 1000 qults (2023, 2028, 2029)
Limited access time e Quantum-classical hybrid
Long queue « 10° qubitto 1 03 qubit
Long execution time (initialization and o -
memsrement) Quantum Sensing / Network
1O (input / output) Challenges and opportunities in

quantum machine learning for
high-energy physics

Sau Lan Wu'™ and Shinjae Yoo?
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