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“Theory Side”

 Why we care about the Higgs and studying its properties in more details
 What theory is needed to understand the Higgs
« BSM side

 What do we expect for Higgs precision

 What can we say about BSM scenarios involving the Higgs

 Complementarity of direct and indirect searches involving the Higgs

(See also tomorrow’s TF-EF cross frontier session)



Another way of saying this, take the section 2.2 of the
EF report and apply it to the Higgs!
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Another way of saying this, take the section 2.2 of the
EF report and apply it to the Higgs!

Direct and Indirect Limits
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Why are you here? Because hopefully we all know the Higgs is the
most unique AND central player in the Standard Model



We’ve all probably seen this figure with the Higgs being the last
piece of the SM and now we’re done?



Absolutely not! After all you just saw all the
myriad of updated projections In Isobel’s talk...
But what do they mean? And when is it
enough?



EF benchmarks

+ HL-LHC

Higgs
Factory

Order of Magnitude for Fractional Uncertainty *5 6(107) ‘ O(.01) ‘ O(.1) ‘ O(1)

For example we can take a snapshot of all of the many many
bar charts - after the first stages of proposed Higgs Factories
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Clearly many parameters greatly improve compared to HL-LHC, but
also many don’t even achieve O(1) accuracy




Okay, but that’s just the first stages, what about
our most futuristic plans at higher energies that
have been studied during Snowmass?



More energy = More Higgses

u*u~ Higgs Production
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This is for lepton colliders, but also true for hadron colliders, e.g. we have more gluons at lower x
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Collider Type Vs P [%] N(Det.) Linst < Time Refs. Abbreviation

. ﬂ- [e /e™] [10**]1em™2s~! | [ab™!] [years]
\O  HL-LHC | pp 14 TeV 2 5 6.0 12 [13] HL-LHC
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. . e) Fcc-hh® | pp 100 TeV - 2 30 30.0 25 (1] FCC-hh
O FCCee ee My 0/0 2 100/200 150 1 (1]
lf.) 2My 0/0 2 25 10 1-2
° ° ° O 240 GeV 0/0 2 7 5 3 FCC-eeq0
240 0/0 2 0.8/1.4 1.5 5 FCC-ees65
Take this with many grains of salit... >
ILC ee 250 GeV  +80/+30 1 1.3512.7 2.0 115 | [3,14] ILCas0
2 350 GeV  +80/430 1 1.6 0.2 1 ILCsso
c 500 GeV  +80/+30 1 1.8/3.6 4.0 8.5 ILCs00
(qv} (+1) (1y SD after 250 GeV run)
'5- 1000 GeV  +80/+20 1 3.6/7.2 8.0 8.5 [4] ILC1000
(+1-2) (1-2y SD after 500 GeV run)
¢ CEPC ee My 0/0 2 1732 16 2 2] CEPC
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9 il . — 240 GeV 0/0 2 3 5.6 7
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HL-LHC ~ .35 x 10 End of LHC ~ O(100) million Higgses! S R0Cey E800 | RN INE CTiCwo
N 30TeV +80/0 1 6.0 5.0 8 CLIC3000
m (+4) (2y SDs between energy stages)
LHeC ep  13TeV 1 0.8 1.0 15 [12] LHeC
HE-LHeC | e¢p 18 TeV 1 15 2.0 20 [1] HE-LHeC
FCC-eh ep 35TeV 1 1.5 2.0 25 (1] FCC-eh

[LC250/350  ~_ 6 X 1()6
FCC-ee240/365 ~ 1.2 x 10°
CEPC240 ~ 1.1 x 10°

CLIC380 ~ 9 x 106 6 TeV 4/ab  ~ 3.2 x 10°
10 TeVio/ab ~ 9.5 x 10°

14 TeV20/ab ~ 9292 % 10°
30 TeV go/ab ~ .12 x 10"

Speculative high energy options (run plans specified here)
Low energy e+e- Higgs factories

- 1 million Higgs Muon (or electron colliders)

Millions to 100s of millions

6
ILC500/1000 4.5 x 10 Moderate energy e+e- Higgs factories

CLIC 1500/3000 ~ 3.4 X ]_()6 ~ few million Higgs 100 TeV 100/3b o 18 x 109
Collider in the sea
FCC-hh  ~ 27 x 10” 27 billion Higgses 500 TeV 50/ab  ~ 400 x 10” Can approach a trillion Higgs

Different energies access different dominant processes (different physics you can access), have different experimental challenges

This is to understand orders of magnitude and what you could do if you could exploit them all!



Not surprising from this perspective why we have the

same rough starting point with similar detector environs
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Big improvement with Energy, but also the SM is not
even close to “complete” so we must press forwards



One thing to keep in mind always...

Gauge bosons are egalitarian

The Higgs Is not.
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S0 what precision is enough?



Zeroth order answer... whenever we find a
devition!
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Remember that any deviation implies new physics

Although parameters from Higgs are arbitrary the
structure is delicately balanced once set



Therefore any deviation points to a scale where
there must be new physics
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FIG. 27: Scale where unitarity is violated as a function of precision of Higgs coupling measurements. The bound is typically
only saturated in strongly interacting scenarios and in specific models tends to be significantly lower.|77].

Similar to Lee-Quigg-Thacker Bounds that said
the Higgs had to be there...



The reverse of this shouldn’t inspire doubt
though...

If we don’t see a deviation in the muon Yukawa this
doesn’t mean all new physics is above 100 TeV!

Are there targets? Are there expected deviation
sizes?



Why is the Higgs so central and important?

Origin of EWSB?

Thermal History of Higgs Portal
Universe to Hidden Sectors?

Naturalness Stability of Universe

Fundamental CPV and
or Composite? Baryogenesis

Is it unique? Origin of masses?

Origin of Flavor?




How do these ideas correlate to observables?

BSM
o S i Higgs Width Pl
I9gs signa 2 searches
strengths % a7 Electric

measurements ¢ E k. 9 N ™ % % " D U A ] Moments

Multi-Higgs

resonances =2 Differential

). Cross Sections

Origin of Flavor? . AN I AN " N N D L R o CPV and
P o S 3 N s e WA % & Baryogenesis

Higgs Portal
to Hidden Sectors?

Thermal History of
Universe




Future colliders offer new observables
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What are the expected size of the effects In the
Higgs sector?

Size of Higgs
Coupling deviations?

2
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Also important to recall,
SMEFT or HEFT doesn’t
always capture
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We’ll give examples
M < 1.7TeV M < 0.8TeV M < 0.1TeV M < 0.9TeV

M < 5.5TeV M <1.4TeV M < 0.4TeV M < 2.8 TeV

Conservative Scaling for Upper Limit on Mass Scale Probed by Higgs Precision



So at this basic level...

* Big questions can connect to observables

 Observables measurable at the 1% to .1% (future colliders on the books)
are typically testing up to the few TeV scale

* Direct and Indirect complementarity clearly matters here!

 But what about some specific connections?



Naturalness

 Love it or Hate it - it’s tied to our understanding of QFT and born out In
applications of QFT

2
my, 0NS M
€E — 5 ~ CE€
Amh 1S M

 Hard to go too far without specific models - depending on type of
contributions Soft, SuperSoft etc Direct searches or Indirect Searches

can be more powerful tests of naturalness



Thermal History of Universe

Temperature

Symmetry non- T

restoration or delayed SM crossover First Order Phase
s Transition
phase transition
EW symmetry EW syiimety

EW symmetry restored

restored
restored?

5, S 6(1072) 54, =0 643 2 0(107%) - O(1)



Hard to give definite targets, and how to not
confuse?
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Higgs Inverse
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FIG. 29: An example from [49] demonstrating different patterns of Higgs deviations from different classes of models, in this
case a 2HDM example and scalar singlet model.



Can be more systematic
from this perspective
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Singlet Extensions of SM Higgs Sector
LD Ansd™S + Nps¢p™S°

Despite their simplicity there still is a lot of physics involved - but still effectively a mass/mixing or mass/coupling
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FIG. 31: This figure is from [78] Figure 8.11, where on the LHS the direct and indirect sensitivity to a singlet which mixes
with the SM Higgs, while on the RHS it is the limit of no-mixing but also overlaid with regions of parameter space for a strong
first-order phase transition.



Singlet Extensions of SM Higgs Sector
LD Ansd™S + Nps 9™ S°
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FIG. 30: Production of a pair of Higgs bosons in the complex singlet model. h; is the SM Higgs boson, and hs, hs are new
gauge singlet scalars. The maximum rates allowed by current LHC data are shown[89].

More nontrivial phenomenology investigated by a number of whitepapers



Lots of new phenomena can occur because at renormalizable level you can couple to Fermions!

Typically classified by

tan p cos(ff — a)

1y _ V2 O IENG
AP = omp, AP = D

U

where 7 dictates the type of 2HDM, given in Table VIII, and my is the mass of fermion type f.

Type-1 Type-11 Type-L Type-F
Nu 1 1 1 1
Nd 1 —tan® f3 1 — tan® f3
il 1 — tan® 3 — tan® 3 1

This comes from Glashow-Weinberg Condition for avoiding FCNCs it is NOT a necessary condition




EFT subtleties w/2HDM

10 0
ﬁ ﬁ - — Exact 2HDM
5. f | .
, | 3l Dim-6, A2
’ f ’ Dim-6, A~
: , _ Dim-8
/

6_
“ _
, | 4
0.5} : -
, — Exact 2HDM | _
Dim—-6, A2 "
. 27
, | Dim-6, A™* _ -
Type-I 2HDM Dim_g | Type-II 2HDM
113 S 1 R .. N/
—0.6 -04 —0.2 0.0 0.2 0.4 0.6 -04 —-0.2 0.0 0.2 0.4
cos(B—a) cos(f—a)

FIG. 32: Matching the 2HDM type-I and type-II to the SMEFT at dimension-6 and dimension-8{96].



HL-LHC 2HDM searches

H/A — 777~ expected exclusion (95% C.L.)
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FIG. 34: Capability of HL-LHC to probe the scalar sector of the 2HDM|56].
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2HDM w/flavor be

up-type

y down-type
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FIG. 35: Probes of flavor violation in a 2HDM at future colliders|64].
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Also Flavorful Models and
CPV in 2HDM section



New Physics In Higgs Loops
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Exotic Higgs Decays
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FIG. 37: Higgs portal model with h — SS. The shaded region allows for an electroweak phase transition. From Ref [83].



Conclusions

We’ve tried to emphasize how important the Higgs is and how connected to so
many different SM issues and BSM possibilities

We’ve tried to give context to what Higgs precision actually means

We’ve tried to give a number of examples for what future colliders can do, as
well as illustrating theory points that are new compared to European Strategy

There’s still an enormous amount of work to be done on all fronts for the Higgs,
but hopefully this gives a basis for where we are and why it’'s SO crucial that we
develop and construct experiments to study the Higgs to death!

We welcome your questions, feedback, and any help in tweaking this to make
the final version as strong as possible!



