
Direct searches at ILC (and other lepton colliders)

Mikael Berggren1

on behalf of the ICFA-IDT-WG3 BSM group

1DESY, Hamburg

Snowmass, Seattle, July, 2022

Mikael Berggren (DESY) Direct searches at LCs Snowmass22 1 / 26



Direct searches at ILC (and other lepton colliders)

Mikael Berggren1

on behalf of the ICFA-IDT-WG3 BSM group

1DESY, Hamburg

Snowmass, Seattle, July, 2022

Mikael Berggren (DESY) Direct searches at LCs Snowmass22 1 / 26



Introduction

The ILC strong points for searches

e+e− collider with ECMS = 250 - 500 (- 1000) GeV, and polarised
beams
e+e− means EW-production⇒ Low background.

Detectors w/ ∼ 4π coverage.
Rad. hardness not needed: only few % X0 in front of calorimeters.
No trigger

e+e− means colliding point-like objects⇒ initial state known
22 year running→ 2 ab−1 @ 250 GeV + 4 ab−1 @ 500 GeV.
Construction under political consideration in Japan.
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Introduction

BSM at ILC

In this talk: Concentrating on
SUSY:

The most complete theory of BSM.
Most studied model with serious simulation: In most cases, full
simulation of ILD, with all SM backgrounds, all beam-induced
backgrounds included.
Serves as a boiler-plate for BSM: almost any new topology can be
obtained in SUSY...
Under some stress(?) by LHC. However, ILC offers

Complete coverage of Compressed spectra - the most interesting
case.
Loop-hole free searches.

+ A few slides on non-SUSY BSMs...
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SUSY: What do we know ?

SUSY: What do we know ?

Naturalness, hierarchy, DM, g-2 all prefer light electroweak sector.
Except for 3rd gen. squarks, the coloured sector doesn’t enter the
game.
Many models and the global set of constraints from observation
points to a compressed spectrum.
So, most sparticle-decays are via cascades, with small ∆(M) at
the end.
For this, current LHC limits are for specific models. LEP2 sets the
scene.
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SUSY: What do we know ?

What would be seen at colliders in the worst case?

MSSM, R-parity conservation (R-parity violation always easier at
e+e−)

Caveat: also CP-conservation. The experimental implication of CP
violation needs study

sfermions not NLSP (idem, except τ̃ but even worse for FCChh...)
Then: LSP is Bino, Wino, or Higgsino (more or less pure), same
for the NLSP
M1,M2 and µ are the main-players.
Consider any values, and combinations of signs, up to values that
makes the bosinos out-of-reach for any new facility ∼ a few TeV.
Also vary other parameters (β,MA,Msfermion) with less impact.
No other prejudice.
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SUSY: What do we know ?

The cube

Specifically, like this:

µ vs. M1

µ vs. M2

M1 vs. M2

Use SPheno 4.0.5beta
to calculate spectra and
BR:s, and use Whizard
2.8.0 for cross-sections

What happens with
spectra, cross-sections,
BRs when exploiting this

“cube”?
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SUSY: What do we know ? The landscape in the cube

Aspects of the spectrum

More in detail
MLSP vs. Mχ̃±

1

MLSP vs. Mχ̃0
2

Colours indicate
different settings of the
secondary parameters
(lesson is that they
don’t matter much...)
Open circles indicated
cases where GUT-scale
unification of M1 and
M2 is not possible
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SUSY: What do we know ? The landscape in the cube

Aspects of the spectrum

Another angle: ∆(M) for χ̃±1 vs. that of χ̃0
2: Important experimentally

Three regions:
Bino: Both the same, but
can be anything.
Wino: ∆

χ̃±
1

small, while ∆
χ̃0

2
can be anything.
Higgsino: Both often small
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SUSY In The Briefing-book

SUSY In The Briefing-book: Bino or Higgsino/Wino
LSP (ie. large or small ∆M)
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SUSY In The Briefing-book

ILC projection for Higgsino or τ̃ NLSP

From arXiv:2002.01239
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From arXiv:2105.08616 ,
Snowmass Whitepaper
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From arXiv:2105.08616 ,
Snowmass Whitepaper

Note:
Discovery and Exclusion are almost the same !
Close to complete coverage of compressed
spectra !
Whatever the NLSP is, and whatever the other
SUSY parameters are !
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SUSY In The Briefing-book

SUSY In The Briefing-book: Bino LSP - pp Sources

From PHYS-PUB-2018-04
(ATLAS HL-LHC projection).
Then extrapolated (up and
down)
Note that the BB curve is
exclusion, not discovery!
This is for the best decay
mode!
The other decay mode
Better at MLSP=0, weaker at
lower ∆M .
Which dominates depends on
relative signs of µ, M1, and M2
(See backup).
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SUSY In The Briefing-book
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SUSY In The Briefing-book

SUSY In The Briefing-book: Bino LSP (ie. large ∆M) -
Reloaded

HL-LHC Exclusion only below red line !
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SUSY In The Briefing-book

SUSY In The Briefing-book: Wino/Higgsino LSP
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SUSY In The Briefing-book

SUSY In The Briefing-book: Wino/Higgsino LSP - Soft
lepton pp Sources

Soft lepton analysis:
ATLAS HL-LHC projection
ATL-PHYS-PUB-2018-031.
CMS HE-LHC projection
(and extrapolated to FCChh)
CMS-PAS-FTR-18-001.

Crucial experimental issue:
lepton ID

To separate e/µ/π, particles
must reach calorimeter.
... and FCChh detector has
both higher B-field and
calorimeter radius (and CMS
has that wrt. ATLAS)

Unlikely that lower ∆(M) will
be excluded in future.
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SUSY In The Briefing-book

SUSY In The Briefing-book: Wino/Higgsino LSP - Very
low ∆(M) pp Sources

Two methods:
“Mono-X”

Only a Delphes (w/ ATLAS card)
analyis for FCChh. Systematics
limited with assumed systematics
than current LHC analyses (with
1/20:th of PU...)

“Disappearing tracks”
FCChh-detector - FCChh-ish PU
(but still to small: 500 vs. CDR
number 955)
For higgsinos: Only just reaches 2 σ
(Don’t look at the pink curves - they
correspond to a detector that is
never considered anywhere else i
the CDR)
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Key element for “Disappearing tracks”: ∆(M) ∼ cτ

Why is this important?
cτ needs to be macroscopic to
get “Disappearing tracks”.
Cf. arXiv:1712.02118
where ATLAS found that cτ
needs to be ∼ 6 cm.
cτ for Higgsino LSP
... and Wino LSP
Previous slide considered only
SM effects on the
mass-splitting, not SUSY
mixings.
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Open: GUT relation does not hold
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Cf. arXiv:1712.02118
where ATLAS found that cτ
needs to be ∼ 6 cm.
cτ for Higgsino LSP
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Conclusion:
Not at all sure that that
lifetime will be large. Good
chances - no guarantee - for
Wino, unlikely for Higgsino.
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SUSY In The Briefing-book

SUSY In The Briefing-book: Wino/Higgsino LSP

So: Disappearing tracks exclusion is actually off the scale !
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SUSY In The Briefing-book: Reloaded

With models that are consitent with g-2 and no over-production of DM
From arXiv:2103.13403.
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SUSY In The Briefing-book

SUSY bosinos - All-in-one

,

, ,
, 139

bino-wino like model

higgsino like model
HL-LHC projection

500 GeV, 1 TeV any modelILC

LEP

No M1 - M
2 GUT unificatio

n below th
is l

ine

:

ATLAS Eur Phys J C 78,995 (2018), Phys Rev D 101,052002 (2020), arXix:2106.01676;

ATLAS HL-LHC ATL-PHYS-PUB-2018-048; ILC arXiv:2002.01239; LEP LEP LEPSUSYWG/02-04.1
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ILC = the LEP of SUSY

At ILC: discovery in a week...

ILD fast detector simulation studies: Selectrons in a co-annihilation
model (EPJC 76,183 (2016)), after:

5 fb−1 ≈ 1 week
and

500 fb−1 ≈ 2 years.

Will never be in “3 σ limbo” !
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ILC = the LEP of SUSY

ILD detector simulation studies:

Typical slepton signal (τ̃ and
µ̃), in a co-annihilation model
(FastSim). (EPJC 76,183 (2016))
Typical chargino signal...
... and typical neutralino
signal, higgsino-LSP model,
with moderate ∆M (FullSim)
(Phys Rev D 101,095026 (2020))
Typical chargino/neutralino
signal, higgsino-LSP model,
with very low ∆M
(Fast/FullSim).
(EPJC 73,2660 (2013))
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In all cases:
SUSY masses to sub-percent
Cross-sections to few percent
Also: Branching fractions,
mixing angles, sparticle spin ...
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Other BSM: a gallery

Other BSM: a gallery

A new Higgs-like scalar (S,
produced in e+e− →Z ∗ → ZS
with unknown decays ?
Search for it in a decay-mode
insensitive way: The
recoil-mass, i.e. the mass of
the system recoiling against
the measured Z .
Example peaks for a coupling
equal to the an SM-Higgs at
the same mass. (arXiv:2005.06265)

⇒ exclude couplings down to
a few percent of the SM-Higgs
equivalent.
Note importance of FullSim !
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Other BSM: a gallery

Other BSM: a gallery

Dark photon/Z’ :
− ε

2 cos θW
F ′µνBµν

A tiny, narrow
resonance, but still
wide enough to make
decays prompt.
⇒ Look for a µµ
resonance above
background in
e+e− →Z ′ + ISR→
µ+µ− + ISR.
Theory study, but with
reasonable assumption
on resolution. FullSim
study is W.I.P.
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ILC
compared to others

(from EPPSU).
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Conclusions

Conclusions

SUSY is still alive - in fact, many well-motivated SUSY models are
hardly toched by LHC limits. And will be so also after HL-LHC and
even FCChh.
The popular “bar-charts” for SUSY reach does not catch this -
Better use MLSP vs. MNLSP plots. And show both discovery and
exclusion reach !
Sometimes, the capabilities for the direct discovery at the ILC
exceed those of the HL-LHC: ILC provides well-defined initial
state, clean environment, extendability and polarised beams.
Detectors can be more precise,hermetic, and run trigger-less
Many ILC - HL-LHC synergies from energy-reach vs. sensitivity.

SUSY: High mass vs. Low ∆(M). If SUSY is reachable at ILC, it
precision measurements. Might be just what is needed for HL-LHC
to transform a 3 σ excess to a discovery of a High mass state !
Dark matter, FIPS, ...: Leptophilic vs. Leptophobic - Higher mass
and higher coupling vs. lower mass and lower coupling.
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Conclusions

More material:
ILC snowmass whitepaper
ILC input to the european strategy update
The Potential of the ILC for Discovering New Particles

and references therein ...

Thank You !
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ILC Detectors: the ILD and SiD concepts

Physics requirements, SM and BSM:
σ(1/p⊥) = 2× 10−5 GeV−1

JER ∼ 3-4%
σ(d0) < 5µ
hermeticity down to 5 mrad
triggerless operation.

Leads to key features of the detector:
High granularity calorimeters
optimised for particle flow
Power-pulsing for low material.

Both concepts can deliver!
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Only WIMPs

What if this is the only accessible NP ?
Search for direct WIMP pair-production at
collider : Need to make the invisible visible:

Require initial state radiation which will
recoil against “nothing”⇒ Mono-X search.
At ILC: e+e− →χχγ, ie. X is a γ

?

χ

χ

+
e

-
e

γ

ILC simulation studies: arXiv:1206.6639v1, A. Chaus, Thesis, M. Habermehl, Thesis,in preparation.
Model-independent Effective operator approach to “?”

Analyse as an effective four-point interaction. Strength = Λ.
Allowable if direct observation the mediator is beyond reach. Mostly
true at ILC, but not at LHC !

Write down all possible Lorentz-structures of the operators.
Exclusion regions in Mχ/Λ plane, for each operator.



ILC and LHC exclusion

Examples:
Vector operator (“spin
independent”), Note how
useful beam-polarisation is!

At LHC, EffOp can’t be used
⇒ use “simplified models”
Need to translate Λ to Mmed :
Mmed =

√
gSMgDMΛ

ILC/LHC complementarity

LHC: coupling to hadrons,
ILC: coupling to leptons.

LHC has best Mχ reach, ILC best
Mmed reach
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SUSY@ILC: Loop-hole free searches
All is known for given masses, due to
SUSY-principle: “sparticles couples as
particles”.
This doesn’t depend on the SUSY breaking
mechanism !
Obviously: There is one NLSP, and it must
have 100 % BR to it’s SM-partner and the
LSP.
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have 100 % BR to it’s SM-partner and the
LSP.

So, at ILC :
Model independent exclusion/ discovery
reach in MNLSP −MLSP plane.
Repeat for all NLSP:s.
Cover entire parameter-space in a few plots
No fine-print!
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Aspects of the spectrum

Another angle: ∆(M) for χ̃±1 vs. that of χ̃0
2: Important experimentally

Three regions:
Bino: Both the same, but
can be anything.
Wino: ∆

χ̃±
1

small, while ∆
χ̃0

2
can be anything.
Higgsino: Both often small

But note, seldom on the
“Higgsino line”, ie. when the
chargino is exactly in the
middle of mass-gap between
the first and second neutralino.
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Bino LSP: BRs

Why is the decay-mode an issue? Here’s why :

Vary relative signs of µ, M1,
and M2

For µ > M2

or µ < M2

Conclusion: Whether the Z or
the H decay-mode of χ̃0

2
dominates is pure speculation
and
The exclusion-region is the
intersection of the two plots,
not the union!
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SUSY In The Briefing-book: Wino/Higgsino LSP - Very
low ∆(M) pp Sources

Two methods: “Mono-X” and
“Disappearing tracks”

“Disappearing tracks”
“Mono-X”

1805.00015, Based on
DELPHES with ATLAS-card
(⇒ LHC PU...)
Both from the HE/HL-LHC
input to ESU (not FCChh)
Systematics-limited. Both
ATLAS and CMS state ∼ 10%
in existing “Mono-X” searches
(PU 1/20 of FCChh)
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Key element for “Disappearing tracks”: ∆(M)

Higgsino LSP.
Zoom in. The line is the
absolute limit mentioned in the
BB.
Reason: 1703.09675
considers only SM effects on
the mass-splitting, ie. that M1
and M2 >> µ

Same for Wino LSP. 0
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SUSY cross-sections at FCChh

Variation of cross-section for pp → uncoloured bosinos + gluon
(CTEQ6L1 pdfs)

Higgsino LSP
Wino LSP
or Bino LSP
Note: Can vary by ∼ factor 2
Note: Exponential fall with
mass
⇒Will extend far beyond
current at high ∆(M), but will
stay below the MNLSP =
2×MLSP line (see backup...)
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SUSY cross-sections at FCChh: Why exponential
fall-off

Consider fixed mqq, at two
masses: First rise w/ β, then
fall-off w/ 1/s.
Fold this with rapidly falling
pdf:s (in particular for the sea)
⇒ mqq (linear) function of
bino-mass
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SUSY cross-sections at FCChh: Why exponential
fall-off

mqq (linear) function of
bosino-mass
At these mass-ratios, missing
pT is proportional to mqq

⇒ missing pT increases
linearly with bosino-mass.
⇒ can increase missing
pT -cut linearly when looking
for higher masses, with the
same efficiency
Then the background
decreases as much.
S/B remains constant along
lines in Mχ̃±

1
vs. MLSP
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Uptake
Expect that the limit sticks to

the same diagonal as energy is
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