α_s: state-of-the-art & the decade ahead

Snowass Summer Meetg. 2022 Seattle, 18th July 2022

David d'Enterria

CERN

The strong coupling constant: State of the art and the decade ahead

[arXiv:2203.08271 [hep-ph]]

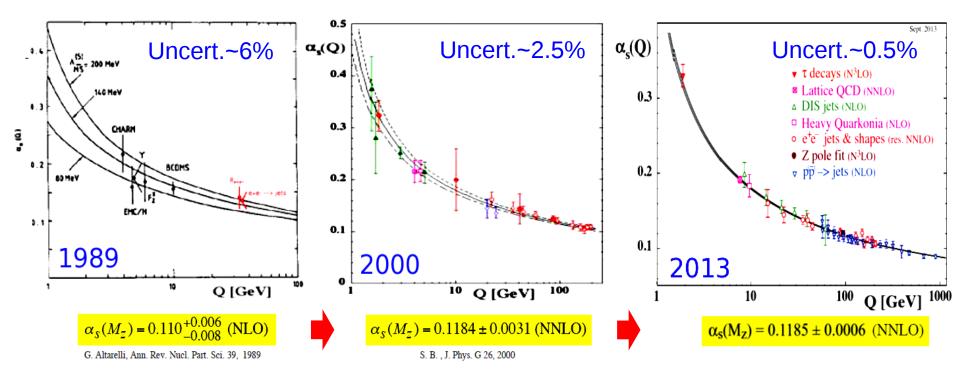
Editors: D. d'Enterria, ¹ S. Kluth, ² G. Zanderighi, ²

Authors: C. Ayala, ³ M.A. Benitez-Rathgeb, ⁴ J. Blümlein, ⁵ D. Boito, ^{4,6} N. Brambilla, ⁷ D. Britzger, ² S. Camarda, ¹ A. M. Cooper-Sarkar, ⁸ T. Cridge, ⁹ G. Cvetič, ¹⁰ D. d'Enterria, ¹ M. Dalla Brida, ¹¹ A. Deur, ¹² F. Giuli, ¹ M. Golterman, ^{13,14} A.H. Hoang, ^{4,15} J. Huston, ¹⁶ M. Jamin, ^{4,17} S. Kluth, ² A. V. Kotikov, ¹⁸ V. G. Krivokhizhin, ¹⁸ A.S. Kronfeld, ¹⁹ V. Leino, ⁷ K. Lipka, ²⁰ T. Mäkelä, ²⁰ B. Malaescu, ²¹ K. Maltman, ^{22,23} S. Marzani, ²⁴ V. Mateu, ^{25,26} S. Moch, ²⁷ P. F. Monni, ¹¹ P. Nadolsky, ²⁸ P. Nason, ^{2,29} A.V. Nesterenko, ¹⁸ R. Pérez-Ramos, ^{30,31} S. Peris, ¹⁴ P. Petreczky, ³² A. Pich, ³³ K. Rabbertz, ³⁴ A. Ramos, ³³ D. Reichelt, ³⁵ A. Rodríguez-Sánchez, ³⁶ J. Rojo, ^{37,38} M. Saragnese, ⁵ L. Sawyer, ³⁹ M. Schott, ⁴⁰ S. Schumann, ⁴¹ B. G. Shaikhatdenov, ¹⁸ S. Sint, ⁴² G. Soyez, ⁴³ D. Teca, ¹⁰ A. Vairo, ⁷ M. Vos, ³³ C. Waits, ³⁹ J. H. Weber, ⁴⁴ M. Wobisch, ³⁹ K. Xie, ⁴⁵ and G. Zanderighi²

 α_s (2022) workshop: https://indico.cern.ch/e/alphas2022

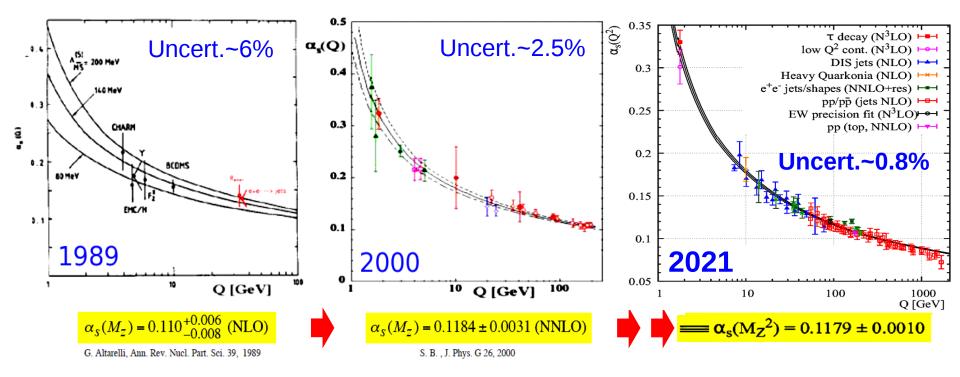
α_s Snowmass White Paper

- Overarching themes: What is the current state-of-the-art and ultimate theoretical & experimental precision of current α_s extraction methods? What needs to be achieved in order to reach a $\mathcal{O}(0.1\%)$ precision?
- Each contributor was requested to provide a few pages summary of their work addressing the following questions:
 - → Theory: What is the current state-of-the-art with regards to higher-order corrections (pQCD, mixed QCD-EW) of your calculations of α_s -dependent observables? What is the impact of non-pQCD corrections/uncertainties? (Are there new techniques to reduce them?) Provide your personal wish-list in theory/data developments needed to reach your ultimate α_s precision.
 - ★ Experiment: What are the current leading syst./stat. uncertainties of your favorite α_s-dependent observable? What are the future reductions of syst./stat. uncertainties expected with current and future (e⁺e⁻, e-p, p-p) machines? (Are there new observables being considered?) Provide your personal wish-list in data/theory developments needed to reach your ultimate α_s precision.


α_s white paper contents

- α s(2022) workshop at ECT*-Trento (Feb. 2022) with S. Kluth & G. Zanderighi
- → Output white paper with 60+ authors, 130+ pages, 80+ figures:

• • •	-		
I. Introduction	4		
II. $\alpha_S(m_Z^2)$ from lattice QCD	6	${ m V.} lpha_S(m_{ m Z}^2)$ from electroweak data	62
1. Remarks on determining α_S^{-1}	6	 Strong coupling from electroweak boson decays at N³LO accuracy ¹⁹ 	62
2. Prospects of lattice determinations of α_S from the FLAG perspective ²	8	a. $\alpha_S(m_{ m Z}^2)$ from W boson decays	63
a. Overview of the current situation	8	b. $\alpha_S(m_{\rm Z}^2)$ from Z boson decays	64
b. Future prospects and conclusions	9	77 / 200 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
3. A precise determination of α_S from lattice QCD using decoupling of heavy quarks ³	10	VI. $\alpha_S(m_{\rm Z}^2)$ from hadronic final-states in e ⁺ e ⁻ collisions	67
a. Finite-volume schemes	11	1. Hadronic vacuum polarization function, R-ratio, and the strong coupling ²⁰	67
b. Step-scaling strategy	12	2. $\alpha_S(m_Z^2)$ from soft parton fragmentation functions ²¹ 3. Power corrections to event-shape distributions and impact on α_S extractions ²²	69
c. α_S from a nonperturbative determination of $\Lambda_{\overline{\rm MS}}^{(N_{\rm f}=3)}$	12	3. Power corrections to event-snape distributions and impact on α_S extractions — a. Definition of the observable	71 72
d. How accurate is $N_{\rm f}=3$ QCD?	13	b. Schematic illustration of the calculation	73
e. Effective theory of decoupling and perturbative matching	13	c. Results and impact on α_S fits	73
f. How perturbative are heavy quarks?	14	4. The strong coupling from groomed event shapes ²³	75 75
g. The strong coupling from the decoupling of heavy quarks	16	4. The strong coupling from groomed event snapes	10
4. Strong coupling constant α_S from moments of quarkonium correlators ⁴	18	VII. $\alpha_S(m_Z^2)$ from hadronic final-states in e-p and p-p collisions	77
5. Strong coupling constant α_S from the static energy, the free energy and the force ⁵	20	1. α_S from jet-production cross sections in neutral-current DIS using NNLO predictions ²⁴	77
a. The QCD static energy	20	a. The running of α_S from HERA jet cross sections	79
b. Static force	24	b. Further processes	80
c. Static singlet free energy	24	c. Future prospects	80
d. Outlook	25	2. $\alpha_S(m_Z^2)$ from inclusive W and Z cross sections in p-p collisions ²⁵	81
d. Outlook	20	3. $\alpha_S(m_Z^2)$ from the transverse-momentum distribution of Z bosons ²⁶	84
III. $\alpha_S(m_Z^2)$ from hadronic tau decays	27	4. Crucial aspects of PDF fits relevant for $\alpha_S(m_{\rm Z}^2)$ determination ²⁷	86
1. Determination of $\alpha_S(m_\tau^2)$ from ALEPH τ decay data ⁶	27	5. Exact fixed-order pQCD predictions for cross section ratios ²⁸	88
2. The strong coupling from hadronic τ decays: present and future ⁷	29	6. Energy range for the RGE test and PDF sensitivity in α_S evaluations from jet cross section rational energy range for the RGE test and PDF sensitivity in α_S evaluations from jet cross section rational energy range for the RGE test and PDF sensitivity in α_S evaluations from jet cross section rational energy range for the RGE test and PDF sensitivity in α_S evaluations from jet cross section rational energy range for the RGE test and PDF sensitivity in α_S evaluations from jet cross section rational energy range for the RGE test and PDF sensitivity in α_S evaluations from jet cross section rational energy range for the RGE test and PDF sensitivity in α_S evaluations from jet cross section rational energy range for the RGE test and PDF sensitivity in α_S evaluations from jet cross section rational energy rational en	$os^{29}92$
a. Review	29	7. New results on α_S and PDFs: QCD and SMEFT interpretation with inclusive jets at \sqrt{s} =13 Te	eV ³⁰ 93
b. Data	32	8. The strong coupling constant and quark masses ³¹	96
c. Results	33		
d. Future improvements	33	VIII. $lpha_S(m_Z^2)$ from quarkonium	99
3. Extraction of α_S using Borel–Laplace sum rules for tau decay data ⁸	34	1. $\alpha_S(m_{\rm Z}^2)$ from relativistic quarkonium sum rules ³²	99
4. Reconciling the fixed order and contour improved perturbative series in hadronic τ decays. ⁹	38	2. $\alpha_S(m_{\rm Z}^2)$ determination from bottomonium spectrum ³³	10
1		TV - (2)11 34	10
77. (2) 0. 77.		IX. $\alpha_S(m_Z^2)$ world average ³⁴ 1. Preliminary considerations	10
IV. $\alpha_S(m_Z^2)$ from DIS and parton densities	42	2. Details of the PDG averaging procedure	10
1. $\alpha_S(m_Z^2)$ through scheme-invariant evolution of N ³ LO non-singlet structure functions ¹⁰	42	a. Criteria for determinations to be included in the world average	10 10
2. $\alpha_S(m_Z^2)$ from DIS large-x structure function resummation ¹¹	44	b. Categories of observables	10
a. Strong coupling constant derivation	44	c. Average and uncertainty in each category	10
b. Scale dependence	45	d. Final average	10
c. Fit results	46	3. Outlook	10
3. Strong coupling α_S in fits of parton distributions ¹²	47	5. Outdook	10
4. Strong coupling determination in the CT18 global analyses ¹³	49	X. Summary	10
5. NNLO $\alpha_S(m_{\rm Z}^2)$ determination from HERA inclusive and jet data ¹⁴	51	1. Summary of the discussions	10
6. Determination of the strong coupling $\alpha_S(m_Z^2)$ in the MSHT20 NNLO PDF fit ¹⁵	54	2. Prospects and wish-lists for high-precision extractions	11
7. Strong coupling determinations from the NNPDF global analyses ¹⁶	56	a. Final wish-list	11
8. Measurements of α_S from spin structure functions ¹⁷	58		
9. $\alpha_S(m_{\rm Z}^2)$ from a combined NNLO analysis of normalized jet cross sections and DIS data ¹⁸	60	References	11


Motivation: QCD coupling α_s

- Determines strength of the strong interaction between quarks & gluons.
- Single free parameter of QCD in the $m_a = 0$ limit.
- Determined at a ref. scale (Q= m_z), decreases as $\alpha_s \sim \ln(Q^2/\Lambda^2)^{1/2} \Lambda \sim 0.2$ GeV

Motivation: QCD coupling α_s

- Determines strength of the strong interaction between quarks & gluons.
- Single free parameter of QCD in the $m_a = 0$ limit.
- Determined at a ref. scale (Q= m_z), decreases as $\alpha_s \sim \ln(Q^2/\Lambda^2)^{1/2} \Lambda \sim 0.2$ GeV

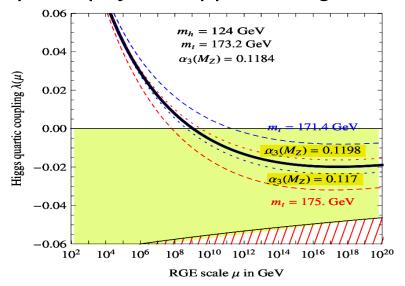
Least precisely known of all interaction couplings!

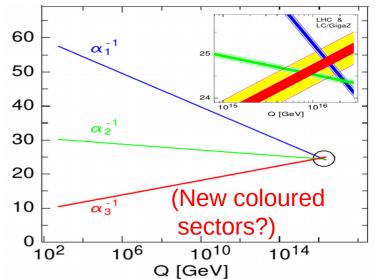
$$\delta \alpha \sim 10^{\text{--}10} \ll \delta G_{\text{\tiny E}} \ll 10^{\text{--}7} \ll \delta G \sim 10^{\text{--}5} \ll \delta \alpha_{\text{\tiny S}} \sim 10^{\text{--}3}$$

Motivation: α_s importance beyond QCD

■ Precision calculations of Higgs hadronic x-sections/decays, top mass, EWPO:

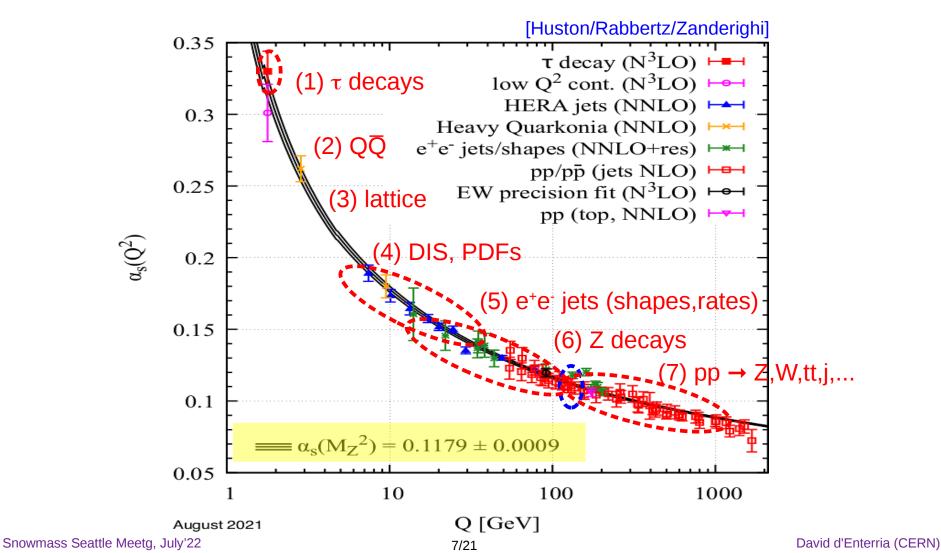
Process	Q (bp)	$\delta \alpha_s(\%)$	PDF $+\alpha_s(\%)$	Scale(%)
ggH	49.87	± 3.7	-6.2 +7.4	-2.61 + 0.32
ttH	0.611	± 3.0	± 8.9	-9.3 + 5.9


Msbar mass error budget (from threshold scan)						
	$(\delta M_t^{ m SD-low})^{ m exp}$	$(\delta M_t^{ m SD-low})^{ m theo}$	$(\delta \overline{m}_t(\overline{m}_t))^{ ext{conversion}}$	$\overline{(\delta\overline{m}_t(\overline{m}_t))^{lpha_s}}$		
	40 MeV	50 MeV	7 – 23 MeV	70 MeV		
	⇒ improvement	in $lpha_s$ crucial		$\delta\alpha_s(M_z) = 0.001$		


Partial width	intr. QCD	para. m_q	para. α_s
$H o b ar{b}$	$\sim 0.2\%$	1.4%	0.4%
$H \to c\bar{c}$	$\sim 0.2\%$	4.0%	0.4%
H o gg	$\sim 3\%$	< 0.2%	3.7%

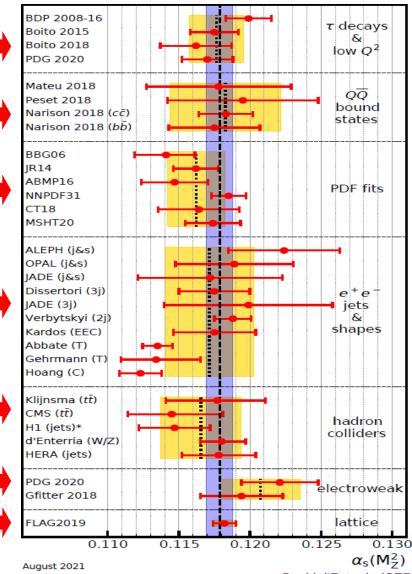
Quantity	FCC-ee	future param.unc. Ma	in sou	rce
Γ_Z [MeV]	0.1	0.1	$\delta lpha_s$	
$R_b \ [10^{-5}]$	6	< 1	$\delta lpha_s$	
R_{ℓ} [10 ⁻³]	1	1.3	$\delta lpha_s$	

Sven Heinemeyer – 1st FCC physics workshop, CERN, 17.01.2017


Impacts physics approaching Planck scale: EW vacuum stability, GUT

World α_s determination (PDG 2021)

Determined today by comparing 7 experimental observables to pQCD NNLO,N³LO predictions, plus global average at the Z pole scale:

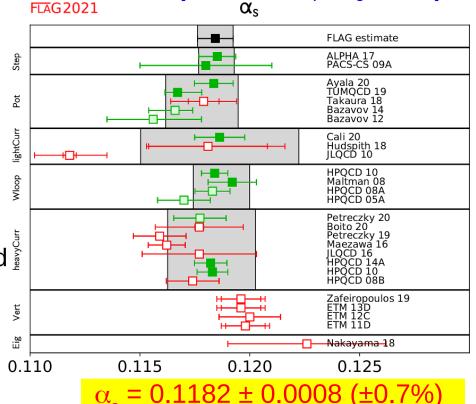


World-average α_s (PDG 2021)

Average of pre-averages from 7 categories of observables:

 $\alpha_s(M_z) = 0.1179 \pm 0.0009 \ (\pm 0.8\%)$ Hadronic tau decay (4 values): $\alpha_{s}(M_{\tau}) = 0.1178 \pm 0.0019 \ (\pm 1.6\%)$ Quarkonia properties (4 values): $\alpha_{s}(M_{z}) = 0.1181 \pm 0.037 \ (\pm 3.3\%)$ DIS & PDFs fits (6 values): $\alpha_{s}(M_{z}) = 0.1162 \pm 0.0020 \ (\pm 1.7\%)$ e⁺e⁻ → hadrons final states (10 values): $\alpha_{s}(M_{z}) = 0.1171 \pm 0.0031 \ (\pm 2.6\%)$ Hadron collider measurements (5 values): $\alpha_{s}(M_{z}) = 0.1165 \pm 0.0028 \ (\pm 2.4\%)$ Electroweak precision fits (2 values): $\alpha_{s}(M_{z}) = 0.1208 \pm 0.0028 \ (\pm 2.3\%)$ Lattice-QCD (1 FLAG value):

 $\alpha_{s}(M_{7}) = 0.1182 \pm 0.0008 \ (\pm 0.7\%)$

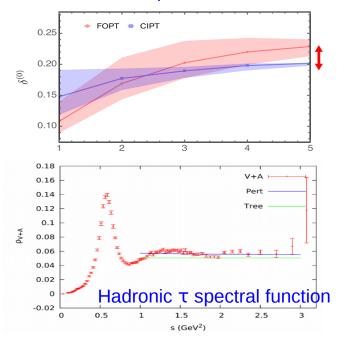


(1) α_s from lattice QCD

■ Comparison of short-distance quantities (QCD static energy/force, light-q & heavy-Q currents, quarkonium,..) computed at N^{2,3}LO in pQCD to lattice data with m_{had}, f_{had} experimental constraints:
[FLAG Collab. http://flag.unibe.ch]

$$K^{\text{NP}} = K^{\text{PT}} = \sum_{i=0}^{n} c_i \alpha_s^i$$

- Community-agreed (FLAG) criteria based on: renorm. scale, pQCD behaviour, continuum limit, peerreviewed results.
- by pQCD truncation & matching, and continuum limit (lattice spacing & computing stats).

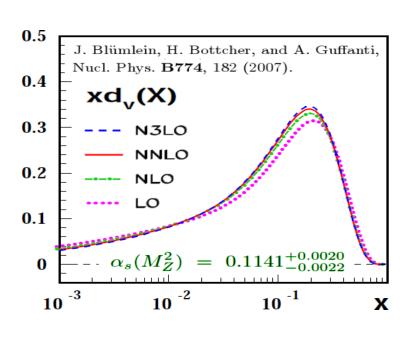

- Future prospects:
 - Uncertainty in α_s halved with reduced latt. spacing, N^{3,4}LO pQCD, active charm quark, extension of step-scaling method to more observables.

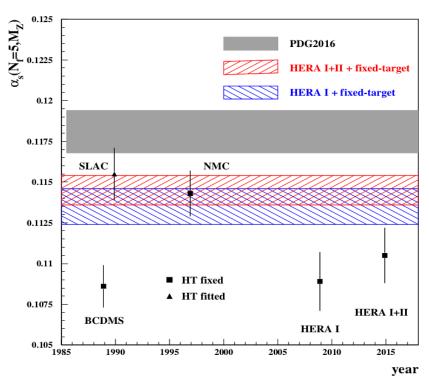
(2) α_s from hadronic τ -lepton decays

■ Computed at N³LO:
$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to \nu_{\tau} e^- \bar{\nu}_e)} = S_{\text{EW}} N_C (1 + \sum_{n=1}^4 c_n \left(\frac{\alpha_s}{\pi}\right)^n + \mathcal{O}(\alpha_s^5) + \delta_{\text{np}})$$

- Experimentally: $R_{\tau,exp} = 3.6355 \pm 0.0081 (\pm 0.22\%)$
- Uncertainty driven today by:
 - Differences in pQCD approaches.
 FOPT vs CIPT OPE expansions:
 - Treatment of non-pQCD corrections (duality violations): Note: $(\Lambda/m_z)^2 \sim 2\%$
- Future prospects:
 - N⁴LO calculations.
 - Reconciling FOPT vs CIPT results (IR renormalon-free gluon condensate)
 - Better spectral functions needed: BELLE-II (~now). Longer future: $\mathcal{O}(10^{11}) \text{ Z} \rightarrow \tau\tau$ at FCC-ee(90)!

Moment's perturbation series:

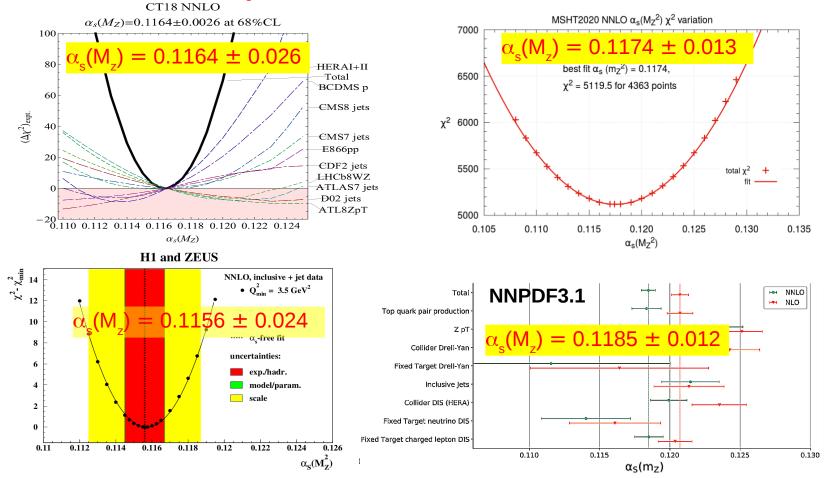



 $\alpha_{\rm s}$ = 0.1178 ± 0.0019 (±1.6%)

(3) α_s from DIS struct. functions & PDF fits

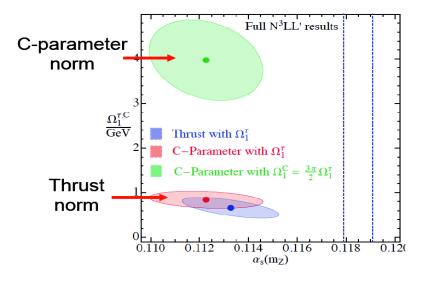
■ N³LO/NNLO analysis of (non)singlet struct. functions (BBG, JR14) (and NNLO global PDF AMBP fit) tend to give "lowish" $\alpha_s(M_z) \approx 0.1150$

$$F_2(x,Q^2) = x \sum_{n=0}^{\infty} \frac{\alpha_s^n(\mu_R^2)}{(2\pi)^n} \sum_{i=a,a} \int_x^1 \frac{dz}{z} C_{2,i}^{(n)}(z,Q^2,\mu_R^2,\mu_F^2) f_{i/p}(\frac{x}{z},\mu_F^2) + \mathcal{O}(\frac{\Lambda^2}{Q^2})$$

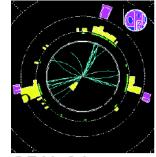


- Neglect of singlet contribs. for x>0.3 in NS fits? Size of higher-order corrs.?
- Future: New high-precision $F_i(x,Q^2)$ & polarized $g_i(x,Q^2)$ at EIC.

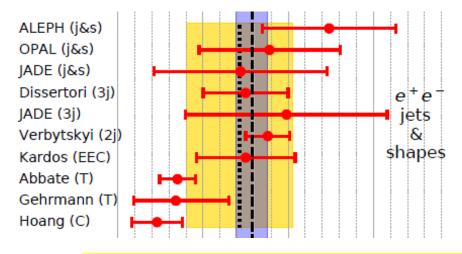
(3) α_s from DIS struct. functions & PDF fits


■ NNLO global PDF+ α_s fits: CT18, HERAPDF2.0+j, MSTH2020, NNPDF3.1

- DIS/FT (LHC) data tend to prefer lower (higher) values of $\alpha_s(M_z)$.
- Size of missing HO corrections? Global fits at N³LO needed.
- → Future: ±0.2% at LHeC/FCC-eh

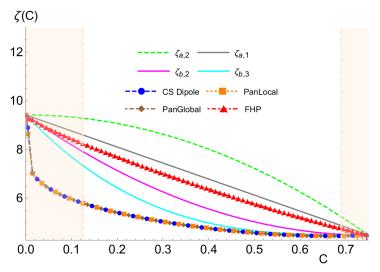

(4) α_s from e⁺e⁻ event shapes & jet rates

- Computed at N^{2,3}LO+N⁽²⁾LL accuracy.
- Experimentally (LEP):
 Thrust, C-parameter, jet shapes
 3-jet x-sections
- Results sensitive to non-pQCD (hadronization) accounted for via MCs or analytically:

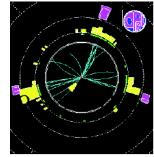


$$\tau = 1 - \max_{\hat{n}} \frac{\sum |\vec{p_i} \cdot \hat{n}|}{\sum |\vec{p_i}|}$$

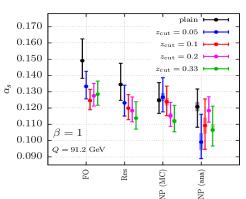
$$C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p_i}| |\vec{p_j}| \sin^2 \theta_{ij}}{(\sum_i |\vec{p_i}|)^2}$$

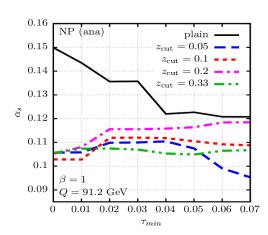

OPAL 3 jet event

 $\alpha_s = 0.1171 \pm 0.0031 (\pm 2.6\%)$


(4) α_s from e⁺e⁻ event shapes & jet rates

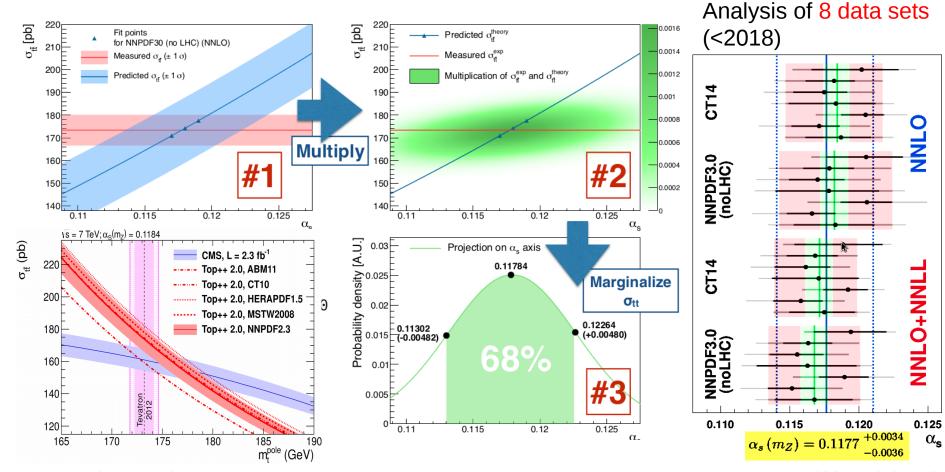
- Computed at N^{2,3}LO+N⁽²⁾LL accuracy.
- Experimentally (LEP):
 Thrust, C-parameter, jet shapes
 3-jet x-sections
- Results sensitive to non-pQCD (hadronization) corrections.
- → Improved evt-shape power-corrs:


$$\tau = 1 - \max_{\hat{n}} \frac{\sum |\vec{p_i} \cdot \hat{n}|}{\sum |\vec{p_i}|}$$

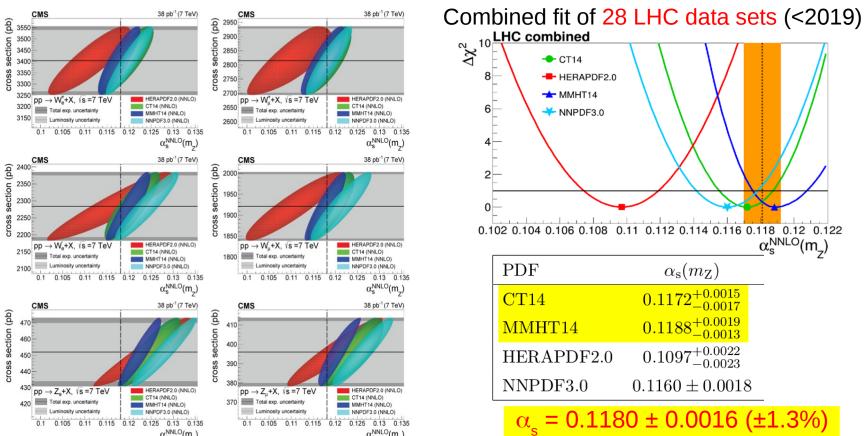

$$C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p_i}| |\vec{p_j}| \sin^2 \theta_{ij}}{(\sum_i |\vec{p_i}|)^2}$$

OPAL 3 jet event

Modern jet substructure techniques: "Soft drop" can help reduce nonpQCD corrections for thrust:

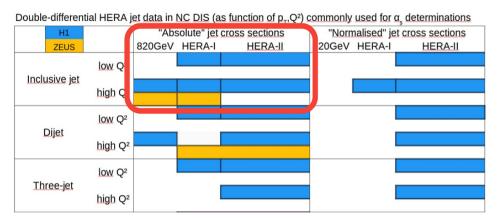


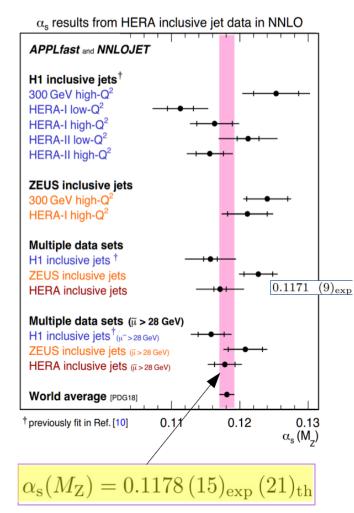
- Future:
- Power-corrections for shapes, (N^{2,3}LL) resummation for rates. Grooming.
- New e⁺e⁻ data at lower-√s (Belle-II) & higher-√s (Higgs factories) needed.


(5) α_s from hadron collider x-sections (ttbar)

- So far, only top-pair and W,Z boson x-sections available at NNLO. (Jets also available at NNLO since couple of years: (long) analysis ongoing).
- Method: Compare σ (exp) to σ (NNLO) computed w/ diff. PDFs/ α_s : Extract α_s
- ${f r}$ ${f \sigma}$ (tt) [dis]advantages: Direct sensitivity to ${f \alpha}_{\rm s}$ [uncertainties: ~5% exp./th., ${f m}_{\rm top}$]

(5) α_s from hadron collider x-sections (W,Z)


- So far, only top-pair and W,Z boson x-sections available at NNLO. (Jets also available at NNLO since couple of years: (long) analysis ongoing).
- Method: Compare σ (exp) to σ (NNLO) computed w/ diff. PDFs/ α_s : Extract α_s
- \blacksquare $\sigma(W,Z)$ [dis]advantages: ~1–2% th./exp. uncertainties [not LO sensitivity to α_s]

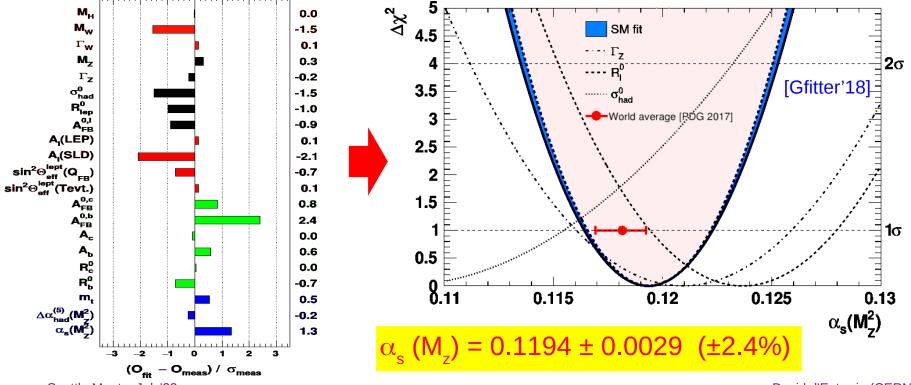

▶ Future: Incorporate $\sigma(tt)$, $\sigma(W,Z)$, $\sigma(j)$, x-section ratios into global PDF+ α_s fits.

(5) α_s from hadron collider x-sections (HERA jets)

■ DIS HERA jet x-sections employed for α_s extractions via NNLOjet:

- α_s from inclusive jet cross sections in NC DIS
- NNLO pQCD w/ non-pert. hadronisation corrections
- H1 and ZEUS consistent
- Sizeable scale uncertainties (MHOU) since data are at comparably low scales
- Highest precision obtained in fit to data with μ > 28 GeV
- Largest uncertainty from missing HO corrs.
- ▶ <u>Future</u>: Nice testbed for <u>upcoming LHC NNLO</u> jet x-sections-based extractions

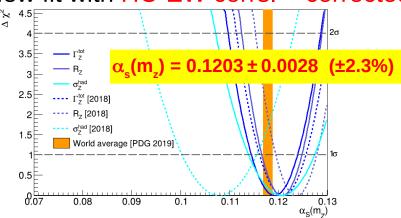
(6) α_s from EW precision fits

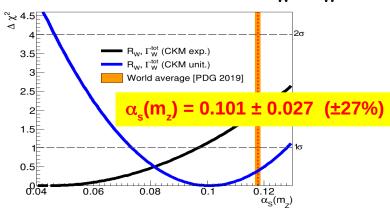

▶ Z-boson decays known at N³LO, no NP uncerts. (but only ~4% sensitivity to α_s):

$$R_{l}^{o} \equiv \frac{\Gamma(Z \to h)}{\Gamma(Z \to l)} = R_{Z}^{EW} N_{C} (1 + \sum_{n=1}^{4} c_{n} \left(\frac{\alpha_{s}}{\pi}\right)^{n} + \mathcal{O}(\alpha_{s}^{5}) + \delta_{m} + \delta_{np})$$

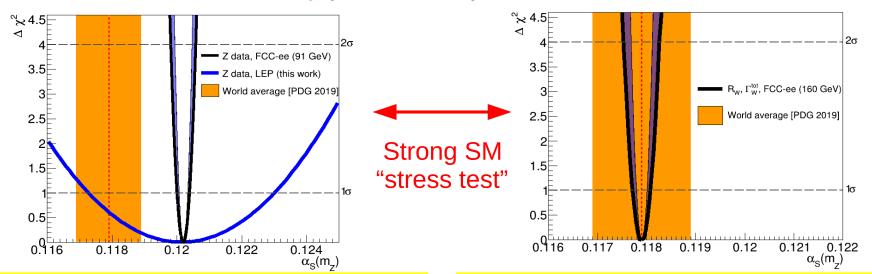
→ Extraction from three Z-peak pseudo-observables (LEP, SLC):

$$\Gamma_{\rm z} = 2.4952 \pm 0.0023 \; {\rm GeV} \; (\pm 0.1\%) \quad \Rightarrow \quad \alpha_{\rm s} \; ({\rm M_z}) = 0.1221 \pm 0.0027 \; (\pm 2.3\%)$$


• Also from the global EW fit leaving α_s as single free parameter:



(6) α_s from hadronic EW bosons decays


■ Updated Z,W-based $\alpha_s(m_z)$ extractions:

New fit with HO EW corrs. + corrected Z LEP data. New N³LO fit to $\Gamma_{\rm w}$, $R_{\rm w}$

Future: Permil uncertainty possible only with a machine like FCC-e⁺e⁻

 $\alpha_s(m_z) = 0.12030 \pm 0.00028 \pm 0.2\%$ (tot), $\pm 0.1\%$ (exp)

 $\alpha_{c}(m_{z}) = 0.11790 \pm 0.00023 \pm 0.2\%$ (tot), $\pm 0.1\%$ (exp)

Summary (I): Current & future α_s precision

	Relative $\alpha_S(m_{ m Z}^2)$ uncertainty				
Method	$\operatorname{Current}$	Near (long-term) future			
	theory & exp. uncertainties sources	theory & experimental progress			
(1) Lattice	0.7%	$\approx 0.3\% \ (0.1\%)$			
(1) Lattice	Finite lattice spacing & stats.	Reduced latt. spacing. Add more observables			
	$N^{2,3}LO$ pQCD truncation	Add N ^{3,4} LO, active charm (QED effects)			
		Higher renorm. scale via step-scaling to more observ.			
(2) τ decays	1.6%	< 1.%			
(2) 7 decays	N^3LO CIPT vs. FOPT diffs.	Add N ⁴ LO terms. Solve CIPT-FOPT diffs.			
	Limited τ spectral data	Improved $ au$ spectral functions at Belle II			
(3) $Q\overline{Q}$ bound states	3.3%	≈ 1.5%			
(5) && bound states	$N^{2,3}LO$ pQCD truncation	Add N ^{3,4} LO & more $(c\overline{c})$, $(b\overline{b})$ bound states			
	$m_{c,b}$ uncertainties	Combined $m_{c,b} + \alpha_S$ fits			
(4) DIS & PDF fits	1.7%	$pprox 1\% \ (0.2\%)$			
(4) DIS & I DI IIIS	$N^{2,(3)}LO$ PDF (SF) fits	N^3LO fits. Add new SF fits: $F_2^{p,d}$, g_i (EIC)			
	Span of PDF-based results	Better corr. matrices. More PDF data (LHeC/FCC-eh)			
(5) e ⁺ e ⁻ jets & evt shapes	2.6%	≈ 1.5% (< 1%)			
(5) e e jets & evt snapes	$NNLO+N^{(1,2,3)}LL$ truncation	Add N ^{2,3} LO+N ³ LL, power corrections			
	Different NP analytical & PS corrs.	Improved NP corrs. via: NNLL PS, grooming			
	Limited datasets $\mathbf{w}/$ old detectors	New improved data at B factories (FCC-ee)			
(6) Electroweak fits	2.3%	(≈ 0.1%)			
(0) Electroweak lits	N^3LO truncation	${ m N^4LO}, { m reduced param. uncerts.} \; (m_{ m W,Z}, \; lpha, \; { m CKM})$			
	Small LEP+SLD datasets	Add W boson. Tera-Z, Oku-W datasets (FCC-ee)			
(7) Hadron colliders	2.4%	≈ 1.5%			
(1) Hadron conders	$\ensuremath{\mathrm{NNLO}}(+\ensuremath{\mathrm{NNLL}})$ truncation, PDF uncerts.	N ³ LO+NNLL (for color-singlets), improved PDFs			
	Limited data sets $(t\overline{t}, W, Z, e-p \text{ jets})$	Add more datasets: Z p_T , p-p jets, σ_i/σ_j ratios,			
World average	0.8%	≈ 0.4% (0.1%)			

Summary (II): α_s wish-list

- **Experimental/Theoretical needs to reach \mathcal{O}(0.1\%) precision:**
- (1) Lattice QCD. Sufficient dedicated computing resources & person-power to:
 - Develop pQCD N^{3,4}LO theory for observables in a finite space-time volume
 - Extend higher renormalization scales via step-scaling to more observables
- (2) Other theory efforts:
 - Completion of hadronic τ decay renormalon analysis
 - Advanced power corrections for e⁺e⁻ event shapes and resummation for jet rates
 - NNLL accuracy parton showers matched to NNLO
 - NNLO(+NNLL) MCs for complex final states in e⁺e⁻, e-p, p-p
 - Differential NNLO predictions for LHC & HERA multi-jet observables,...
- (3) Extension of NNLO hadron-collider- and/or PDF-based extractions via:
 - Incorporation of multiple new LHC precision observables and datasets
 - Improved treatment of exp. correlation matrices uncertainties among measurements.
 - New DIS measurements at high-energy facilities: EIC first, LHeC/FCC-eh longer future (approx. ±0.2%).
- (4) Hadronic Z (and W) decays is the only non-lattice method known that can reach permil precision: Tera-Z (FCC-ee) machine needed.

Backup slides

α_s from hadronic EW decays (Update)

♦ Incorporated new $α^2$, $α^3$ EW corrections(*) to Z pseudoobserv:

DdE, Jacobsen: arXiv:2005.04545 [hep-ph]

• The W and Z hadronic widths: (*)Dubovyk/Chen/Freitas et al. arXiv:1906.08815, arXiv:2002.05845

$$\Gamma_{ ext{W,Z}}^{ ext{had}}(Q) = \Gamma_{ ext{W,Z}}^{ ext{Born}} \left(1 + \sum_{i=1}^4 a_i(Q) \left(rac{lpha_S(Q)}{\pi}
ight)^i + \mathcal{O}(lpha_S^5) + \delta_{ ext{EW}} + \delta_{ ext{mix}} + \delta_{ ext{np}}
ight)$$

TH uncertainties:

±0.01% (Z) ±0.02% (W)

• The ratio of W, Z hadronic-to-leptonic widths:

$$\mathrm{R_{W,Z}}(Q) = \frac{\Gamma_{\mathrm{W,Z}}^{\mathrm{had}}(Q)}{\Gamma_{\mathrm{W,Z}}^{\mathrm{lep}}(Q)} = \mathrm{R_{W,Z}^{\mathrm{EW}}} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{\alpha_S(Q)}{\pi}\right)^i + \mathcal{O}(\alpha_S^5) + \delta_{\mathrm{mix}} + \delta_{\mathrm{np}}\right)$$

Parametric uncerts.:

 $(\alpha_s, \mathsf{m}_{\mathsf{Z},\mathsf{W}}; \mathsf{V}_{\mathsf{cs},\mathsf{ud}})$:

 $\pm 0.03\%$ (Z)

±1.7% (W)

±0.03% (W, CKM unit)

• In the Z boson case, the hadronic cross section at the resonance peak in e^+e^- :

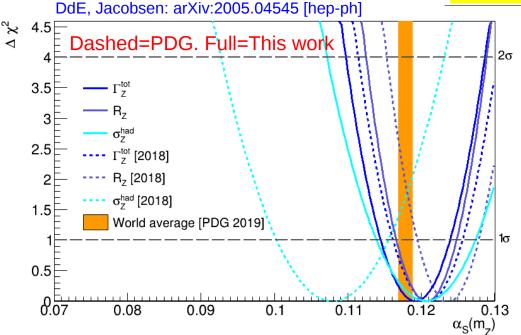
theory

$$egin{aligned} oldsymbol{\sigma_{\mathrm{Z}}^{\mathrm{had}}} = rac{12\pi}{m_{\mathrm{Z}}} \cdot rac{\Gamma_{\mathrm{Z}}^{e} \Gamma_{\mathrm{Z}}^{\mathrm{had}}}{(\Gamma_{\mathrm{Z}}^{\mathrm{tot}})^{2}} \end{aligned}$$

◆ Incorporated modified LEP data due to luminosity bias correction(*):

experiment

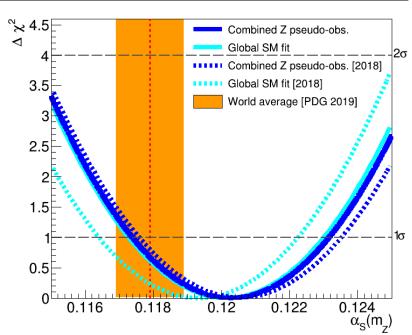
	previous	ne	ew (this work)	$_{ m change}$	previous [6]	new [20, 2	1]	$_{ m change}$
$\Gamma_{\rm Z}^{ m tot} \ ({ m MeV})$	$2494.2 \pm 0.8_{\rm th}$	2495	$0.2 \pm 0.6_{ m par} \pm 0.4_{ m th}$	+0.04%	2495.2 ± 2.3	2495.5 ± 2	.3	+0.012%
$R_{\mathbf{Z}}$	$20.733 \pm 0.007_{\mathrm{th}}$	20.750	$\pm 0.006_{ m par} \pm 0.006_{ m th}$	+0.08%	20.767 ± 0.025	20.7666 ± 0.0	0247	-0.040%
$\sigma_{\rm Z}^{\rm had}$ (pb)	$41490\pm6_{\rm th}$	41	$494 \pm 5_{ m par} \pm 6_{ m th}$	+0.01%	41540 ± 37	41480.2 ± 3	2.5	-0.144%
W boson	W boson GFITTER 2.2 (NNLO) this work (N ³ LO) experiment							
observables			(exp. CKM)		(CKM u	nit.)		
$\Gamma_{\rm W}^{\rm had} \ ({ m MeV})$	_		$1440.3 \pm 23.9_{ m par} \pm$	$0.2_{ m th}$	$1410.2 \pm 0.8_{\rm p}$	$_{ m ar}\pm0.2_{ m th}$	14	405 ± 29
$\Gamma_{ m W}^{ m tot} \ ({ m MeV})$	$2091.8 \pm 1.0_{ m pa}$	ur .	$2117.9 \pm 23.9_{ m par} \pm$	$0.7_{ m th}$	$2087.9 \pm 1.0_{\rm p}$	$_{ m ar}\pm0.7_{ m th}$	20	085 ± 42
R_{W}	_	2	$2.1256 \pm 0.0353_{ m par} \pm 0.0353_{ m par}$	$0.0008_{ m th}$	$2.0812 \pm 0.0007_{\rm p}$	$_{ m ar} \pm 0.0008_{ m th}$	2.06	69 ± 0.019


Recent update of LEP luminosity bias change the Z values by few permil

(*) Voutsinas et al. arXiv:1908.01704, Janot et al. arXiv:1912.02067

α_s from hadronic Z decays (Update)

- QCD coupling extracted from:
- (i) Combined fit of 3 Z pseudo-observ:
- (ii) Full SM fit (with $\alpha_{\rm s}$ free parameter)


Z boson	$lpha_S(m_{ m Z})$	uncertainties		
observable	extraction	exp.	param.	theor.
$\Gamma_{ m Z}^{ m tot}$	0.1192 ± 0.0047	± 0.0046	± 0.0005	± 0.0008
$R_{\mathbf{Z}}$	0.1207 ± 0.0041	± 0.0041	± 0.0001	± 0.0009
$\sigma_{ m Z}^{ m had}$	0.1206 ± 0.0068	± 0.0067	± 0.0004	± 0.0012
All combined	0.1203 ± 0.0029	± 0.0029	± 0.0002	± 0.0008
Global SM fit	0.1202 ± 0.0028	± 0.0028	± 0.0002	± 0.0008

▶ LEP lumi-bias updates lead to much better agreement among Γ_{7} , R_{7} , σ_{0} extractions:

$$\alpha_s(m_z) = 0.1203 \pm 0.0028 \ (\pm 2.3\%)$$

PDG'21:
$$\alpha_s(m_g) = 0.1221 \pm 0.0027 \ (\pm 2.3\%)$$

EXP/TH updates lead to better agreement with full SM fit:

$$\alpha_s(m_z) = 0.1202 \pm 0.0028$$

PDG'21: $\alpha_s(m_z) = 0.1194 \pm 0.0029$

David d'Enterria (CERN)

Snowmass Seattle Meetg, July'22

24/21

α_s from hadronic W decays (Update)

DdE, Jacobsen: arXiv:2005.04545 [hep-ph]

▶ Parametrized W boson Γ_{W}^{lep} , Γ_{W}^{had} , Γ_{W}^{tot} , Γ_{W}^{tot} (with α_{s}^{4} , α , $\alpha_{s}\alpha$ corrections):

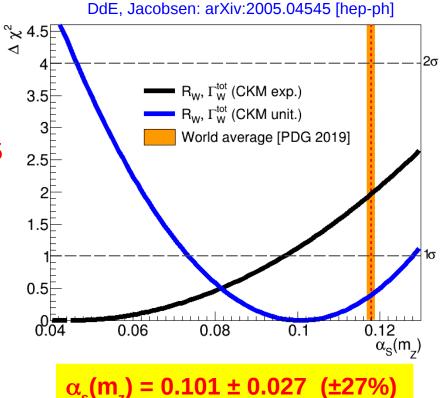
$$\Gamma_{\mathrm{W}}^{\mathrm{lep}} = \Gamma_{0} + c_{1} \Delta_{\mathrm{W}} + c_{4} \Delta_{\mathrm{H}} + c_{5} \Delta_{t} + c_{7} \Delta_{\tau}, \qquad \Gamma_{\mathrm{W}}^{\mathrm{had}} = \Gamma_{0} + c_{1} \Delta_{\mathrm{W}} + c_{2} \Delta_{\mathrm{CKM}} + c_{3} \Delta_{\alpha_{S}} + c_{6} \Delta_{\alpha_{S}}^{2}, \\ \Delta_{\mathrm{W}} = \left(\frac{m_{\mathrm{W}}}{80.379}\right)^{3} - 1, \quad \Delta_{\mathrm{H}} = \log\left(\frac{m_{\mathrm{H}}}{125.10}\right), \quad \Delta_{t} = \left(\frac{m_{t}}{172.9}\right) - 1, \quad \Delta_{\tau} = \left(\frac{m_{\tau}}{1.777}\right) - 1 \qquad \Delta_{\alpha_{S}} = \frac{\alpha_{S}(m_{\mathrm{Z}})}{0.1179} - 1, \quad \Delta_{\mathrm{CKM}} = \frac{|V_{cd}|^{2} + |V_{cs}|^{2}}{0.218^{2} + 0.997^{2}} - 1$$

$$\frac{\mathrm{W} \ \mathrm{widths} \ (\mathrm{GeV}) \qquad \Gamma_{0} \qquad c_{1} \qquad c_{2} \qquad c_{3} \qquad c_{4} \qquad c_{5} \qquad c_{6} \qquad c_{7} \qquad \mathrm{Max} \ \mathrm{dev}.}{\Gamma_{\mathrm{W}}^{\mathrm{lep}}} \qquad (\mathrm{exp.} \ \mathrm{CKM}) \qquad 1440.28 \qquad 1446.61 \qquad 734.557 \qquad 53.76 \qquad - \qquad - \qquad - 1.24411 \qquad - \qquad < 0.0002}$$

$$\frac{\Gamma_{\mathrm{W}}^{\mathrm{had}} \ (\mathrm{exp.} \ \mathrm{CKM}) \qquad 1440.28 \qquad 1446.61 \qquad 734.557 \qquad 53.76 \qquad - \qquad - \qquad - 1.15932 \qquad - \qquad < 0.0002}{\Gamma_{\mathrm{W}}^{\mathrm{tot}} \ (\mathrm{exp.} \ \mathrm{CKM}) \qquad 2119.58 \qquad 2044.8 \qquad 732.55 \qquad 50.67 \qquad 0.03980 \qquad 0.46258 \qquad - 1.0723 \qquad - 0.36408 \qquad < 0.0002}$$

$$\Gamma_{\mathrm{W}}^{\mathrm{tot}} \ (\mathrm{CKM} \ \mathrm{unit.}) \qquad 2089.51 \qquad 2088.26 \qquad - \qquad 52.28 \qquad 0.04790 \qquad 0.47842 \qquad - 1.2683 \qquad - 0.32942 \qquad < 0.0002}$$

Numerical evaluation of W boson (N³LO + EW corrs.) pseudo-observables :


W boson	GFITTER 2.2 (NNLO)	this work	experiment	
observables		(exp. CKM) (CKM unit.)		
$\Gamma_{ m W}^{ m lep} \; ({ m MeV})$	_	679.4 ± 0.3	682.2 ± 10.2	
$\Gamma_{\rm W}^{\rm had} \; ({ m MeV})$	_	$1440.3 \pm 23.9_{\rm par} \pm 0.2_{\rm th}$	$1410.2 \pm 0.8_{\mathrm{par}} \pm 0.2_{\mathrm{th}}$	1405 ± 29
$\Gamma_{\rm W}^{\rm tot} \; ({ m MeV})$	$2091.8\pm1.0_{\rm par}$	$2119.6 \pm 23.9_{\mathrm{par}} \pm 0.7_{\mathrm{th}}$	$2089.5 \pm 1.1_{ m par} \pm 0.7_{ m th}$	2085 ± 42
R_{W}	_	$2.1200 \pm 0.0352_{\rm par} \pm 0.0016_{\rm th}$	$2.0757 \pm 0.0014_{\rm par} \pm 0.0015_{\rm th}$	2.0684 ± 0.0254

α_s from hadronic W decays (Update)

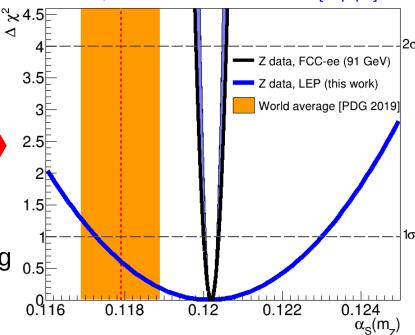
• QCD coupling extracted from new N³LO fit of combined Γ_{w} , R_{w} pseudo-observ.:

W boson	$lpha_S(m_{ m Z})$	uncertainties		
observables	extraction	\exp .	param.	theor.
$\Gamma_{\rm W}^{ m tot}$, ${ m R}_{ m W}$ (exp. CKM)	0.044 ± 0.052	± 0.024	± 0.047	(± 0.0014)
$\Gamma_{ m W}^{ m tot},{ m R}_{ m W}$ (CKM unit.)	0.101 ± 0.027	± 0.027	(± 0.0002)	(± 0.0016)
$\Gamma_{\mathrm{W}}^{\mathrm{tot}}$, R_{W} (FCC-ee, CKM unit.)	0.11790 ± 0.00023	± 0.00012	± 0.00004	± 0.00019

- → Still very imprecise extraction:
- Large propagated parametric uncert. from poor V_{cs} exp. precision (±2%): QCD coupling unconstrained: 0.04±0.05
- Imposing CKM unitarity: large exp. uncertainties from $\Gamma_{\rm w}$, $R_{\rm w}$ (±0.9–2%): QCD coupling with ~27% precision
- Propagated TH uncertainty much smaller today than exp. ones: ~1%

α_s from hadronic Z decays (future)

- QCD coupling extracted from:
- (i) Combined fit of 3 Z pseudo-observ:
- (ii) Full SM fit (with α_s free parameter)


Z boson	$lpha_S(m_{ m Z})$	uncertainties		
observable	extraction	\exp .	param.	theor.
All combined	0.1203 ± 0.0029	± 0.0029	± 0.0002	± 0.0008
Global SM fit	0.1202 ± 0.0028	± 0.0028	± 0.0002	± 0.0008
All combined (FCC-ee)	0.12030 ± 0.00026	±0.000 <mark>13</mark>	± 0.00005	± 0.00022
Global SM fit (FCC-ee)	0.12020 ± 0.00026	$\pm 0.000 \frac{13}{13}$	± 0.00005	± 0.00022

→ <u>FCC-ee</u>:

- Huge Z pole stats. ($\times 10^5$ LEP):
- Exquisite systematic/parametric precision (stat. uncert. negligible):

$$\Delta R_{\rm Z} = 10^{-3}$$
, $R_{\rm Z} = 20.7500 \pm 0.0010$
 $\Delta \Gamma_{\rm Z}^{\rm tot} = 0.1$ MeV, $\Gamma_{\rm Z}^{\rm tot} = 2495.2 \pm 0.1$ MeV
 $\Delta \sigma_{\rm Z}^{\rm had} = 4.0$ pb, $\sigma_{\rm Z}^{\rm had} = 41494 \pm 4$ pb
 $\Delta m_{\rm Z} = 0.1$ MeV, $m_{\rm Z} = 91.18760 \pm 0.00001$ GeV
 $\Delta \alpha = 3 \cdot 10^{-5}$, $\Delta \alpha_{\rm had}^{(5)}(m_{\rm Z}) = 0.0275300 \pm 0.0000009$

- TH uncert. to be reduced by $\times 4$ computing missing α_s^5 , α^3 , $\alpha\alpha_s^2$, $\alpha\alpha_s^2$, $\alpha^2\alpha_s$ terms
- ♦ 10 times better precision than today: $\delta\alpha_s/\alpha_s \sim \pm 0.2\%$ (exp+th), $\pm 0.1\%$ (exp) Strong (B)SM consistency test.

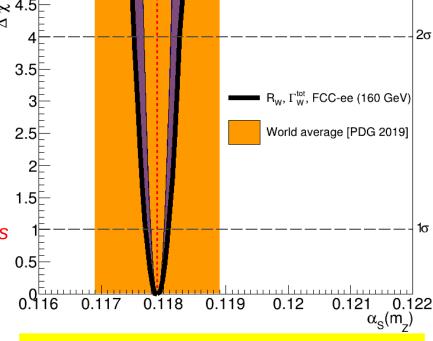
DdE, Jacobsen: arXiv:2005.04545 [hep-ph]

 $\alpha_s(m_z) = 0.12030 \pm 0.00028 \ (\pm 0.2\%)$

α_s from hadronic W decays (future)

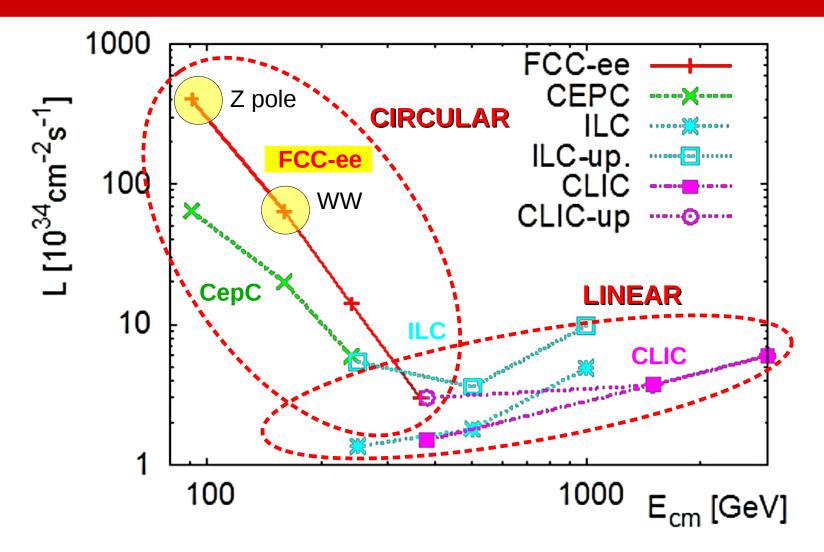
▶ QCD coupling extracted from new N³LO fit of combined Γ_{w} , R_{w} pseudo-observ.:

W boson	$lpha_S(m_{ m Z})$	uncertainties		
observables	extraction	exp. param. theor		
$\Gamma_{\rm W}^{\rm tot}$, $R_{\rm W}$ (exp. CKM)	0.044 ± 0.052	± 0.024	± 0.047	(± 0.0014)
$\Gamma_{ m W}^{ m tot},{ m R}_{ m W}$ (CKM unit.)	0.101 ± 0.027	± 0.027	(± 0.0002)	(± 0.0016)
$\Gamma_{\mathrm{W}}^{\mathrm{tot}}$, R_{W} (FCC-ee, CKM unit.)	0.11790 ± 0.00023	± 0.00012	± 0.00004	± 0.00019

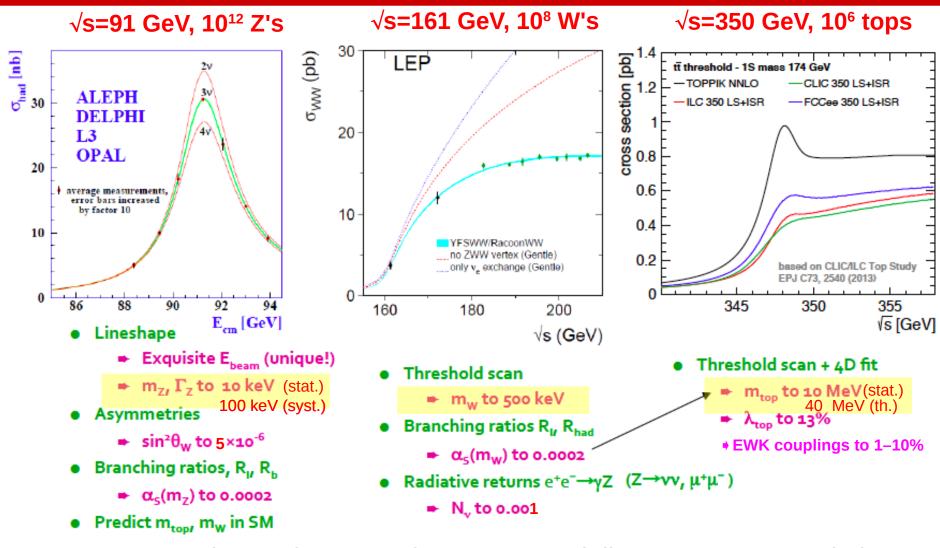

→ FCC-ee extraction:

- Huge W pole stats. ($\times 10^4$ LEP-2).
- Exquisite syst./parametric precision:

$$\Gamma_{
m W}^{
m tot} = 2088.0 \pm 1.2 \ {
m MeV}$$
 ${
m R}_{
m W} = 2.08000 \pm 0.00008$
 $m_{
m W} = 80.3800 \pm 0.0005 \ {
m GeV}$
 $|V_{cs}| = 0.97359 \pm 0.00010 \ \leftarrow {
m O}(10^{12}) \ {
m D} \ {
m mesons}$


– TH uncertainty to be reduced by $\times 10$ after computing missing α_s^5 , α^2 , α^3 , $\alpha\alpha_s^2$, $\alpha\alpha_s^2$, $\alpha^2\alpha_s^2$ terms

DdE, Jacobsen: arXiv:2005.04545 [hep-ph]


 $\alpha_s(m_z) = 0.11790 \pm 0.00023 \ (\pm 0.2\%)$

Future e⁺e⁻ colliders under discussion

- FCC-ee features lumis a few times larger than other machines over 90–240 GeV
- Unparalleled Z, W, jets, τ ,... data sets: Negligible α_s stat. uncertainties

Ultra-precise W, Z, top physics at FCC-ee

- Unparalleled Z, W, jets, τ ,... data sets: Negligible α_s stat. uncertainties
- Unparalleled syst. uncert.: $\delta E_{cm}(Z,W) \sim 0.1$, 0.3 MeV \rightarrow Very precise $\Gamma_{W,Z}$

Snowmass Seattle Meetg, July'22

David d'Enterria (CERN)

α_s from hadronic W decays (today)

♦ Width known at N³LO. As for Z boson, small sensitivity to α_s (only beyond Born):

$$\Gamma_{\mathrm{W,had}} = \frac{\sqrt{2}}{4\pi} G_{\mathrm{F}} m_{\mathrm{W}}^{3} \sum_{\mathrm{quarks \ i,j}} |V_{\mathrm{i,j}}|^{2} \left[1 + \sum_{\mathrm{k=1}}^{4} \left(\frac{\alpha_{\mathrm{s}}}{\pi} \right)^{k} + \delta_{\mathrm{electroweak}}(\alpha) + \delta_{\mathrm{mixed}}(\alpha\alpha_{\mathrm{s}}) \right]$$

$$[\mathrm{EWK: -0.35\%}]$$

$$V_{\mathrm{i,j}}|^{2}$$

$$96.60\%$$

$$V_{\mathrm{W}}$$

$$96.60\%$$

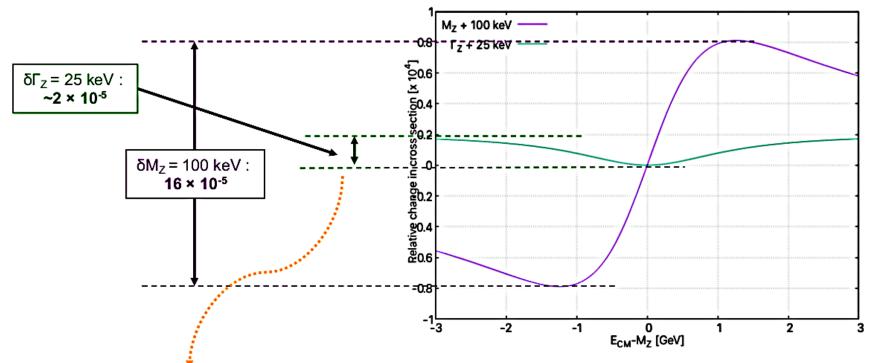
Recalculation of partial and total hadronic W widths:

DdE, Srebre:arXiv:1603.06501

Partial widths (MeV)	$\Gamma^{(0)}$	$\Gamma_{QCD}^{(1)}$	$\Gamma_{\text{QCD}}^{(2)}$	$\Gamma_{QCD}^{(3)}$	$\Gamma_{QCD}^{(4)}$	Γ_{ewk}	Γ_{mixed}	Γ^{W}_{had}
$W \rightarrow qq' \text{ (exp. } V_{ij})$ $W \rightarrow qq' \text{ (} V_{ij}V_{jk} = \delta_{ik}\text{)}$	1379.851 1363.197	52.931 52.291						$1428.65 \pm 22.40_{par} \pm 0.04_{th}$ $1411.40 \pm 0.96_{par} \pm 0.04_{th}$
$W \rightarrow qq' \text{ (exp. } V_{ij}) \text{ [5]}$ $W \rightarrow qq' \text{ (} V_{ij}V_{jk} = \delta_{ik}\text{) [5]}$	1408.980 1363.640							$\begin{aligned} 1458.820 \pm 0.006_{th} \\ 1411.910 \pm 0.006_{th} \end{aligned}$

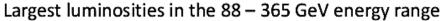
- → Careful evaluation of parametric (V_{i,i}, m_w) & theoretical uncertainties:
 - Parametric uncertainty: ±22.40 MeV (dominated by V_{cs})

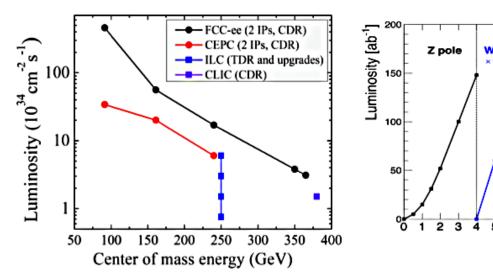
 ± 0.96 MeV (CKM unitarity, dominated by m_{w})

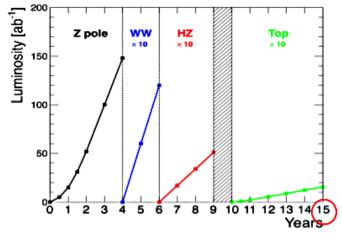

- Higher-order QCD corrections: ± 0.2 MeV (diffs. N³LO vs N⁴LO for Γ_7)
- Higher-order EWK, mixed corrections: ±0.035 MeV (from D.Kara NPB877(2013)683)
- Others (non-pQCD $(\Lambda_{OCD}/m_W)^4$, finite q masses above LO, ren. scheme,...): negligible

FCC-ee (91 GeV) syst. uncertainties

◆ FCC-ee goal: Via Z line-shape scan, determine Z parameters to precisions:


$$\delta M_Z = 100 \text{ keV}$$
; $\delta \Gamma_Z = 25 \text{ keV}$


□ Plot shows relative change in cross section across Z resonance for parameter variation of this size



- ◆ Z width measurement most demanding: Need relative normalisation to about 10-5
 - □ Need statistics of order 10¹⁰
 - □ Need careful control of energy dependent effects

FCC-ee Luminosity, Operation, Data samples

Event statistics	s precision
5×10 ¹² e ⁺ e ⁻ → Z	100 keV
108 e+e- → W+W-	300 keV
$10^6 e^+e^- \rightarrow HZ$	1 MeV
10 ⁶ e+e ⁻ → tt	2 MeV

Working point	Z, years 1-2	Z, later	ww	HZ	tt threshold	and above
√s (GeV)	88, 91, 94		157, 163	240	340 - 350	365
Lumi/IP (10 ³⁴ cm ⁻² 5 ⁻¹)	100	200	25	7	0.8	1.4
Lumi/year (2 IP)	24 ab-1	48 ab-1	6 ab-1	1.7 ab-1	0.2 ab ⁻¹	0.34 ab ⁻¹
Physics goal	150 ab ⁻¹		10 ab-1	5 ab-1	0.2 ab ⁻¹	1.5 ab-1
Run time (year)	2	2	2	3	1	4