Pictures from the QCD Frontier

M. Begel, S. Höche, Y.J. Lee, H.-W. Lin,S. Mukherjee, Pavel Nadolsky,C. Royon, and M. Schmitt (conveners)

On behalf of QCD and Strong Interactions Topical Groups:

- EF05: Precision QCD
- EF06: Hadronic structure and forward QCD
- EF07: Heavy lons

Joint EF05-06-07 report on QCD to be released soon!

Detailed discussions of

- Current and future hadron collider facilities
- Perturbative calculations and QCD tests (α_s , $m_b^{\overline{\text{MS}}}$,...)
- Parton distribution functions (PDFs) and fragmentation functions (FFs)
- Predicting hadron structure in lattice QCD
- Forward scattering and saturation
- Jet substructure
- Photon-photon scattering
- Ultraperipheral collisions
- QCD with heavy ions
- Cross cutting aspects

Based on 19 Snowmass'2021 White Papers

- The Forward Physics Facility: Sites, Experiments, and Physics Potential [1]
- The Forward Physics Facility at the High-Luminosity LHC [2]
- Opportunities for precision QCD physics in hadronization at Belle II a Snowmass whitepaper [3]
- The Future Circular Collider: a Summary for the US 2021 Snowmass Process [4]
- The International Linear Collider [5]
- Physics with the Phase-2 ATLAS and CMS Detectors [6]
- Event Generators for High-Energy Physics Experiments [7]
- Jets and Jet Substructure at Future Colliders [8]
- The strong coupling constant: State of the art and the decade ahead [9]
- Some aspects of the impact of the Electron Ion Collider on particle physics at the Energy Frontier [10]
- Lattice QCD Calculations of Parton Physics [11]
- Prompt electron and tau neutrinos and antineutrinos in the forward region at the LHC [12]
- xFitter: An Open Source QCD Analysis Framework [13]
- The Potential of a TeV-Scale Muon-Ion Collider [14]
- Forward Physics, BFKL, Saturation Physics and Diffraction [15]
- Proton structure at the precision frontier [16]
- Impact of lattice $s(x) \bar{s}(x)$ data in the CTEQ-TEA global analysis [17]
- Opportunities for new physics searches with heavy ions at collider [18]
- Heavy Neutral Lepton Searches at the Electron-Ion Collider [19]
- Electron Ion Collider for High Energy Physics [10, 20]

QCD draws strong interest in numerous discussions at the Snowmass CSS...

- 1. ... as the only QFT that can be experimentally studied in perturbative and nonperturbative phases
- 2. ... as the key theory in HEP phenomenology now and in the future
- 3. ... it is rich both in data and in ideas!

Higgs physics relies on QCD

Electroweak precision physics relies on QCD

For instance, *W* boson mass measurements at the Tevatron and LHC

See J. Isaacson, TF06+07, for discussion of QCD+EW theory issues

Figure reproduced from CDF-II measurement (Science 376, 170).

I. Moult, CompF03, TF07

Toward jet substructure as a precision science

QCD dynamics at various energy scales is imprinted in angular distributions of particle energy flows.

Developments in formal QCD and AI/ML open avenues to learn about this dynamics directly from recorded collider events

Forward QCD

New forward QCD experiments: LHCb, Forward Physics Facility, forward diffractive scattering, central exclusive production, LHC as a photon-photon collider

(TMD) factorization formalisms and evolution at small x

Best observables to look for small-x factorization (BFKL) and parton saturation

Incisive measurements and predictive models for diffractive scattering

Saturation in the nuclear medium (ALICE, EIC, ...)

QCD dynamics at very large x (intrinsic charm)

Precision of Monte-Carlo programs for forward particle production

Prospects to probe small-x dynamics at intermediate virtualities in ultraperipheral *pp*, *pA*, *AA* collisions

QCD controls accuracy of SMEFT analyses

QCD report @ Seattle CSS

Higher-dim operators and QCD effects modify SMEFT exclusion limits

F. Petriello, TF07

•Extending fits to data to include $1/\Lambda^4$ dimension-6 squared effects can have a significant impact on the constraints.

Fitting SMEFT coefficients and PDFs together can modify the constraints, too

QCD theory = the key factor in $t\bar{t}$ threshold scans at FCC-ee

$\delta m_t^{r,s}$ [MeV]	ILC	CLIC	FCC-ee
$\mathcal{L}[\mathrm{fb}^{-1}]$	200	$100 \ [200]$	200
Statistical uncertainty	10	$20 \ [13]$	9
Theoretical uncertainty (QCD)	40-45		
Parametric uncertainty α_s	26	26	3.2
Parametric uncertainty y_t (HL-LHC)	5		
Non-resonant contributions	< 40		
Experimental systematic uncertainty	atic uncertainty $15-30$ $11-20$		
Total uncertainty	40 - 75		

2022-07-23

F. Simon, EF03

Multi-loop revolution in perturbative QCD drives critical advancements in many areas

NNLO QCD + NLO EW predictions are now a standard for many LHC processes

N3LO is becoming available and will be in [high] demand in the HL-LHC era

2022 Les Houches wish list for PQCD calculations for hadron colliders

TABLE IV. Summary of the LesHouches precision wishlist for hadron colliders [545]. HTL stands for calculations in heavy top limit, VBF* stands for structure function approximation.

process	known	desired	
$pp \rightarrow H$	N ³ LO _{HTL} , NNLO ^(t) _{QCD} , N ^(1,1) LO ^(HTL) _{QCD⊗EW}	N ⁴ LO _{HTL} (incl.), NNLO ^(b,c) _{QCD}	
$pp \rightarrow H + j$	NNLO _{HTL} , NLO _{QCD} , N ^(1,1) LO _{QCD⊗EW}	NNLO _{HTL} \otimes NLO _{QCD} + NLO _{EW}	
$pp \rightarrow H + 2j$	$NLO_{HTL} \otimes LO_{QCD}$	$NNLO_{HTL} \otimes NLO_{QCD} + NLO_{EW}$,	
	N ³ LO _{QCD} ^(VBF[*]) (incl.), NNLO _{QCD} ^(VBF[*]) , NLO _{EW} ^(VBF)	NNLO _{QCD}	
$pp \rightarrow H + 3j$	NLO _{HTL} , NLO _{QCD}	NLO _{QCD} + NLO _{EW}	
$pp \rightarrow VH$	$NNLO_{QCD} + NLO_{EW}, NLO_{gg \rightarrow HZ}^{(t,b)}$		
$pp \rightarrow VH + j$	NNLO _{QCD}	$NNLO_{QCD} + NLO_{EW}$	
$pp \rightarrow HH$	$N^{3}LO_{HTL} \otimes NLO_{QCD}$	NLO _{EW}	
$pp \rightarrow HHH$	NNLO _{HTL}		
$pp \rightarrow H + t\bar{t}$	NLO _{QCD} + NLO _{EW} , NNLO _{QCD} (off-diag.)	NNLO _{QCD}	
$pp \rightarrow H + t/\bar{t}$	NLOQCD	$NNLO_{QCD}$, $NLO_{QCD} + NLO_{EW}$	
$pp \rightarrow V$	N ³ LO _{QCD} , N ^(1,1) LO _{QCD⊗EW} , NLO _{EW}	$N^{3}LO_{QCD} + N^{(1,1)}LO_{QCD\otimes EW}$, $N^{2}LO_{EW}$	
$pp \rightarrow VV'$	$NNLO_{QCD} + NLO_{EW}$, + NLO_{QCD} (gg)	NLO _{QCD} (gg,massive loops)	
$pp \rightarrow V + j$	$NNLO_{QCD} + NLO_{EW}$	hadronic decays	
$pp \rightarrow V + 2j$	$NLO_{QCD} + NLO_{EW}$, NLO_{EW}	NNLO _{QCD}	
$pp \rightarrow V + b\bar{b}$	NLO _{QCD}	$NNLO_{QCD} + NLO_{EW}$	
$pp \rightarrow VV' + 1j$	$NLO_{QCD} + NLO_{EW}$	NNLO _{QCD}	
$pp \rightarrow VV' + 2j$	NLO_{QCD} (QCD), $NLO_{QCD} + NLO_{EW}$ (EW)	Full $NLO_{QCD} + NLO_{EW}$	
$pp \rightarrow W^+W^+ + 2j$	Full $NLO_{QCD} + NLO_{EW}$		
$pp \rightarrow W^+W^- + 2j$	$NLO_{QCD} + NLO_{EW}$ (EW component)		
$pp \rightarrow W^+Z + 2j$	$NLO_{QCD} + NLO_{EW}$ (EW component)		
$pp \rightarrow ZZ + 2j$	Full $NLO_{QCD} + NLO_{EW}$		
$pp \rightarrow VV'V''$	NLO _{QCD} , NLO _{EW} (w/o decays)	$NLO_{QCD} + NLO_{EW}$	
$pp \rightarrow W^{\pm}W^{+}W^{-}$	$NLO_{QCD} + NLO_{EW}$		
$pp \rightarrow \gamma \gamma$	$NNLO_{QCD} + NLO_{EW}$	N ³ LO _{QCD}	
$pp \rightarrow \gamma + j$	$NNLO_{QCD} + NLO_{EW}$	N ³ LO _{QCD}	
$pp \to \gamma\gamma + j$	$NNLO_{QCD} + NLO_{EW}$, + NLO_{QCD} (gg channel)		
$pp \rightarrow \gamma \gamma \gamma$	NNLOQCD	NNLO _{QCD} + NLO _{EW}	

$pp \rightarrow 2 \text{ jets}$	$NNLO_{QCD}$, $NLO_{QCD} + NLO_{EW}$	$N^{3}LO_{QCD} + NLO_{EW}$	
$pp \rightarrow 3 \text{ jets}$	$NNLO_{QCD} + NLO_{EW}$		
	NNLO _{QCD} (w/ decays)+ NLO _{EW} (w/o decays)		
$pp \to t \bar{t}$	NLO _{QCD} + NLO _{EW} (w/ decays, off-shell)	N ³ LO _{QCD}	
	NNLO _{QCD}		
$pp \rightarrow t\bar{t} + j$	NLO _{QCD} (w/ decays, off-shell)	$NNLO_{QCD} + NLO_{EW}$ (w/ decays)	
	NLO _{EW} (w/o decays)		
$pp \rightarrow t\bar{t} + 2j$	NLO _{QCD} (w/o decays)	$NLO_{QCD} + NLO_{EW}$ (w/ decays)	
	$NLO_{QCD} + NLO_{EW}$ (w/o decays)	$\text{NNLO}_{\text{QCD}} + \text{NLO}_{\text{EW}} \text{ (w/ decays)}$	
$pp \rightarrow n + 2$	$\rightarrow tt + Z$ NLO _{QCD} (w/ decays, off-shell)		
$pp \rightarrow t\bar{t} + W$	NLO _{QCD} + NLO _{EW} (w/ decays, off-shell)	$NNLO_{QCD} + NLO_{EW}$ (w/ decays)	
$pp \rightarrow t/\bar{t}$	NNLO _{QCD} *(w/ decays)	NNLO and NLO mu (m/ decam)	
	NLO _{EW} (w/o decays)	MNLOQCD + NLOEW (w/ decays)	
$pp \rightarrow tZj$	$NLO_{QCD} + NLO_{EW}$ (w/ decays)	$NNLO_{QCD} + NLO_{EW}$ (w/o decays)	

[545] A. Huss, J. Huston, S. Jones, and M. Pellen, "Report on the standard model precision wishlist,". To appear in Les Houches 2021: Physics at TeV Colliders.

QCD report @ Seattle CSS

QCD coupling strength $\alpha_s(M_Z)$ is the least known coupling of the Standard Model. Even gravity is known better. Yet, α_s controls accuracy of many collider measurements.

Future measurements of the QCD coupling

individual α_s measurements can reach precision of $\,\sim\,0.1\%$

and symbols: CIPT='contour-improved perturbation theory', FOPT='fixed-order perturbation theory', NP='nonperturbative QCD', SF='structure functions', PS='Monte Carlo parton shower'.

	Relative $\alpha_s mZ$ uncertainty		
Method	Current	Near (long-term) future	
	theory & exp. uncertainties sources	theory & experimental progress	
(1) Latting	0.7%	$\approx 0.3\% (0.1\%)$	
(1) Lattice	Finite lattice spacing & stats.	Reduced latt. spacing. Add more observables	
	N ^{2,3} LO pQCD truncation	Add N ^{3,4} LO, active charm (QED effects)	
		Higher renorm. scale via step-scaling to more observ.	
(2) τ decays	1.6%	< 1.%	
	N ³ LO CIPT vs. FOPT diffs.	Add N ⁴ LO terms. Solve CIPT–FOPT diffs.	
	Limited τ spectral data	Improved τ spectral functions at Belle II	
(3) $Q\bar{Q}$ bound states	3.3%	$\approx 1.5\%$	
	N ^{2,3} LO pQCD truncation	Add N ^{3,4} LO & more $(c\overline{c})$, $(b\overline{b})$ bound states	
	$m_{c,b}$ uncertainties	Combined $m_{c,b} + \alpha_s$ fits	
(4) DIS & PDF fits	1.7%	$\approx 1\% (0.2\%)$	
	N ^{2,(3)} LO PDF (SF) fits	N ³ LO fits. Add new SF fits: $F_2^{p,d}$, g_i (EIC)	
	Span of PDF-based results	Better corr. matrices, sampling of PDF solutions.	
		More PDF data (EIC/LHeC/FCC-eh)	
(5) at a jota & out shapped	2.6%	$\approx 1.5\% (< 1\%)$	
(5) E E Jets & evt snapes	NNLO+N ^(1,2,3) LL truncation	Add N ^{2,3} LO+N ³ LL, power corrections	
	Different NP analytical & PS corrs.	Improved NP corrs. via: NNLL PS, grooming	
	Limited datasets w/ old detectors	New improved data at B factories (FCC-ee)	
(6) Electromody fite	2.3%	(≈ 0.1%)	
(6) Electroweak fits	N ³ LO truncation	N ⁴ LO, reduced param. uncerts. ($m_{W,Z}$, α , CKM)	
	Small LEP+SLD datasets	Add W boson. Tera-Z, Oku-W datasets (FCC-ee)	
(7) Hadron colliders	2.4%	$\approx 1.5\%$	
	NNLO(+NNLL) truncation, PDF uncerts.	N ³ LO+NNLL (for color-singlets), improved PDFs	
	Limited data sets $(t\bar{t}, W, Z, e-p \text{ jets})$	Add more datasets: Z $p_{\rm T}$, p-p jets, σ_i/σ_j ratios,	
World average	0.8%	$\approx 0.4\% (0.1\%)$	

D. d'Enterria et al., EF QCD, arXiv:2203.08271

Lattice QCD & world-average α_s combination

Lattice determinations of α_s in multiple channels are projected to be [far] more precise than many experiments. Several challenges with combining the eclectic α_s inputs with the current procedure.

Time to rethink how the world-average α_s combination is performed?

Heavy-quark masses

· Flavor Lattice Averaging Group (FLAG), arXiv:2111.09849.

· Green passes all quality criteria; filled enters average (open superseded).

In m_c , m_b calculations, lattice QCD already surpasses the PDG average in accuracy

Precision parton distribution functions for (N)NNLO calculations are obtained in versatile global analyses, with lattice QCD providing increasingly valuable inputs

Progress in PDF analysis

K. Xie, EF QCD

S. Amoroso *et al.*, "Snowmass 2021 whitepaper: Proton structure at the precision frontier," arXiv:2203.13923 [hep-ph].

QCD report @ Seattle CSS

Lattice QCD for unpolarized PDFs

- Precise pheno PDFs are used to calibrate lattice PDF calculations
- In turn, lattice QCD can constrain PDFs (subleading, polarized, meson, TMDs, GPDs,...) that are difficult to access in experiments
- Example: the strangeness asymmetry $s(x, Q) \overline{s}(x, Q)$ at x > 0.2 is difficult to measure (left), but can be predicted in lattice QCD (right)

QCD report @ Seattle CSS

New DIS and forward physics experiments that run **concurrently** with, or after the HL-LHC, create a strong synergistic effect in both SM and BSM studies

Electron-Ion Collider

R. Abdul Khalek et al., "Snowmass 2021 White Paper: Electron Ion Collider for High Energy Physics," in 2022 Snowmass Summer Study. 3, 2022. arXiv:2203.13199 [hep-ph].

S. V. Chekanov and S. Magill, "Some aspects of impact of the Electron Ion Collider on particle physics at the Energy Frontier," in 2022 Snowmass Summer Study. 2, 2022. arXiv: 2202.11529

the only new large-scale accelerator facility planned for construction in US in the next few decades

polarized electrons with polarized beams of proton and light ions

many opportunities for QCD and beyond:

- Precision 3-dimensional tomography of hadrons and nuclei
- Physics of QCD jets
- Physics of heavy flavors
- Partonic saturation
- □ Electroweak and beyond standard model physics

The EIC will strengthen the physics reach of the HL-LHC

Electron-Ion Collider: a wealth of HEP-focused studies

I MOLLER

0

Log₁₀ Q [GeV]

P2

-1

EHC

З

SLC

Tevatron

2

SoLID

2004.00748, .2204.07557

Lorentz/CPT violations A. R. Vieira et al., 1911.04002

 10^{2}

2022-07-23

-3

-2

0.23

0.225^l

The Muon-Ion Collider, Large Hadron Electron Collider, FCC-eh

D. Acosta et al., "The Potential of a TeV-Scale Muon-Ion Collider," arXiv:2203.06258 [hep-ph] LHeC, FCC-he Study Group, arXiv:1206.2913, 2007.14491

The Forward Physics Facility at CERN

L. A. Anchordoqui *et al.*, "The Forward Physics Facility: Sites, Experiments, and Physics Potential," arXiv:2109.10905 [hep-ph].

J. L. Feng et al., "The Forward Physics Facility at the High-Luminosity LHC," arXiv: 2203.05090

The FPF can clarify multiple aspects of QCD in the new forward region **in coordination** with the HL-LHC and EIC

2022-07-23

M. H. Reno, EF QCD

Progress in QCD increasingly depends on cross-cutting research

Cross-cutting QCD

Many future successes depend on developments at the intersections of highenergy QCD and other domains

 For example, multi-functional QCD event generators play the central role in collider studies

- Low-energy QCD facilities will elucidate nonpert. QCD aspects of resummations, jet substructure
- Consistent estimates of systematic uncertainties are indispensable for precision analyses and require experimental-theoretical collaborations

QCD at 1% accuracy

N2LO and N3LO calculations

QCD infrastructure for these calculations

representative uncertainty estimates systemwide processes and standards for accuracy control

Lots of promise in this area

Parton showers, fast NxLO interfaces, PDFs, ... must be comparably accurate

or The Importance of Being Earnest with Systematic Errors (experiment+theory; traditional or AI/ML)

This must be a part of the precision-focused community culture

Why QCD?

- Many precision measurements in Higgs, top, and EWK - are limited by our understanding of QCD
- Completing the HL-LHC & EIC programs together with a Higgs factory - will provide unprecedented levels of precision in QCD impacting most areas in the Energy Frontier

Many thanks to the participants of the Seattle meeting and EF TGs for their strong interest in the topic.

