Testing dark matter using the Higgs boson

Diallo Boye, Ketevi Assamagan

Snowmass Community Summer Study in Seattle EF10: BSM: Dark Matter at colliders

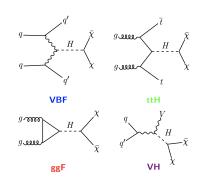
July 21, 2022

The Higgs boson exists and then...

- The Higgs boson exists and it's discovered in 2012 → scrutinize its properties and the Higgs sector nature.
- Recent search set a 95% CL upper limit of 21% on the branching ratio for H boson decays via undetected modes.

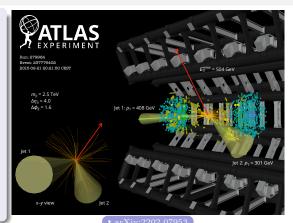
→ arXiv:1909.02845

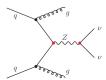
⇒ Exotic decays of the Higgs boson remain a high priority.

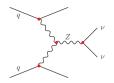


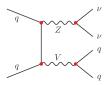
- Even with its excellent successes in providing experimental predictions, the SM leaves some phenomena unexplained.
 - hierarchy problem, baryon asymmetry, **Dark Matter**/energy etc...
- Many Beyond Standard Model (BSM) theories predict the Higgs as mediator between SM particles and dark matter • PhysRevD.82.055026 • doi.org/10.1016/ • Phys. Rev. Lett. 112, 201802

Higgs to invisible search at the LHC

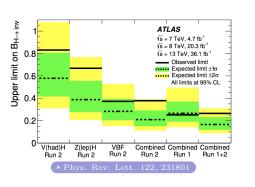

• Invisible Higgs carries off momentum, characterised by large missing transverse momentum in the events

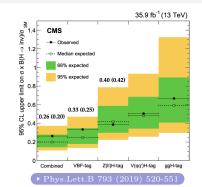

- Four different channels for the Higgs to invisible search
- Very unlikely process in Standard Model; branching ratio $\mathcal{B}_{H \to inv} \sim 1.05 \times 10^{-3} \; \mathrm{from}$ $H \to ZZ^* \to 4 \nu$
- Can be significantly enhanced in various BSM scenarios, including Higgs coupling to dark matter ("Higgs portal").



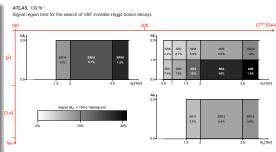

Vector Boson Fusion: VBF

- Strong background rejection due to its distinct event topology.
- The most sensitive mode for invisible decays of a Higgs boson at hadron colliders
- Three mains backgrounds: Z strong, Z electroweak and di-boson production.





Previous Higgs to invisible search in ATLAS and CMS


Channel	ATLAS (Run 2)		CMS	
Chamie	Observed	Expected	Observed	Expected
VBF	0.37	0.28	0.33	0.25
ZH	0.67	0.39	0.40	0.42
VH	0.83	0.58	0.32	0.38
Combined	0.38	0.21	0.26	0.20

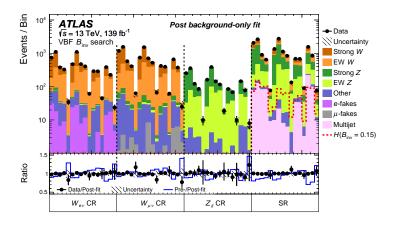
- The most recent search on Higgs to invisible will be discussed in the rest of the talk.
- By focusing on the more sensitive channel: VBF.

VBF search in ATLAS: Analysis strategy • arXiv:2202.07953

Event selection

- Two jets with $p_T(j_1/j_2) > 80/50 \text{ GeV}.$
- Small add. jet activity: $p_T(j_3) < 25 \text{ GeV}.$
- Jets in opposite hemispheres.
- $\Delta \eta_{ij} > 3.8$.
- $m_{ij} > 0.8 \text{ TeV}$
- Veto on e and μ
- A 3D $m_{ij}, \Delta \phi_{ij}$ and N_{iets} binning used.

Bkg estimates


• The V+jets (95%) bkgs) estimates by data-driven technique.

Systematics uncertainties

- Lepton and JER (32% and 40%)
- theoretical uncertainties on V+Jets bkg $\sim 28\%$.

VBF search in ATLAS: Results Parxiv:2202.07953

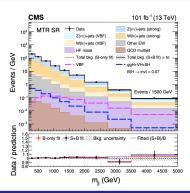
Total bkg.	14990 ± 2990	1880 ± 510	6210 ± 1260	9150 ± 1890	4560 ± 760	2110 ± 390	2030 ± 110
H (VBF)	886 ± 81						3.9 ± 1.3
H(ggF)	106 ± 41	Predicted signal for $\mathcal{B}_{inv} = 15\%$			$1.0 \pm \frac{1.5}{1.0}$		
H(VH)	0.9 ± 0.2						-
Data	16 490	2051	6361	9294	4563	2110	2033

VBF search in CMS: Analysis strategy • arXiv:2201.11585

Event selection

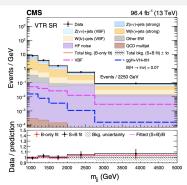
- Two complementary trigger strategies:
 - missing momentum triggered region (MTR)
 - VBF jets triggered region (VTR).

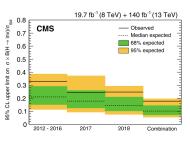
VBF SR selection (Full table available in the backup)					
Observable	MTR	VTR			
Choice of pair	Leading- pT jets	Leading- m_{jj} jets			
Leading (subleading) jet	$p_T > 80(40) GeV, \eta < 4.7$	$p_T > 140(70) GeV, \eta < 4.7$			
p_T^{miss}	> 250 GeV	$160 < p_T^{miss} < 250 \text{ GeV}$			
$\min(\Delta\phi(p_T^{miss}, p_T^{jet}))$	> 0.5	> 0.8			
$ \Delta \phi_{jj} $	< 1.5 GeV	1.8 GeV			
m_{jj}	< 200 GeV	900 GeV			

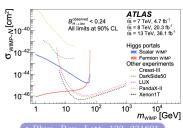

Bkg estimation

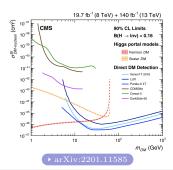
- V+jets bkg, estimated by independent CRs.
- Data driven method used for the mutiljet backgrounds.

Systematics uncertainties

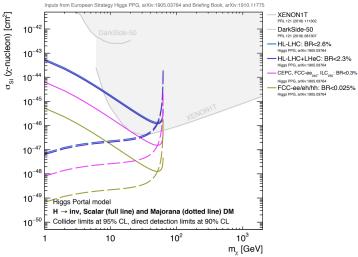

• Jet energy scale and resolution (up to 35%), Theory uncertainty taken from another ref.


VBF search in CMS: Results • arXiv:2201.11585


- No significant deviations from the SM expectations are observed.
- Combination of 2017 and 2018 results yields an observed (expected) upper limit of $\mathcal{B}(H \to inv) < 0.18(0.12)$.



VBF search in ATLAS: Interpretation


- Interpretation in the context of Higgs-portal models of DM interactions \rightarrow stable DM particle couples to the SM Higgs boson.
- Higgs boson as mediator between a DM particle and an atomic nucleus.
- If $m_{DM} < \frac{m_H}{2}$, then Γ_{inv} can be translated within and EFT approach into a spin-independent DM-nucleon elastic scattering cross section.
- Transformation performed assuming the DM candidate is either a scalar or a Majorana fermion.

More interpretation: • snowmass2021BSMReportV1

• The authors propose to extend the results to DM masses below the GeV since the translation between collider parameters of the theory and DM-nucleon cross-section are still valid in all regimes of momentum transfer

Our interpretation study proposal: • arXiv:2107.01252

- As shown in the slide 10 and 11, Higgs portal Vector DM (VDM) line has been removed in all ATLAS and CMS publication since Run 1.
 - This is motivated by some objection on the EFT approach.
- In our study we propose to reconsider the VDM interpretation.
- UV radiative Higgs portal model also considered in this work.
- We also do the extension to the low mass regime (below 1 GeV).

Effective Field Theory approach

$$\mathcal{L}_{V} = \frac{1}{2} m_{V}^{2} V_{\mu} V^{\mu} + \frac{1}{4} \lambda_{V} (V_{\mu} V^{\mu})^{2} + \frac{\lambda_{hVV}}{4} H^{\dagger} H V_{\mu} V^{\mu}.$$

- Paper: Phys.Lett.B 709 (2012)
- Only 2 parameters:
 - HVV coupling λ_{HVV}
 - Vector mass m_V
- Derive Higgs invisible decay width $\Gamma_{
 m inv}$ and spin-independent XS $\sigma_{
 m WIMP-N}$

$$\begin{split} \sigma^{\rm SI}(\text{V-N})_{EFT} &= \lambda_{HVV}^2 \frac{m_N^2 f_N^2}{16\pi m_H^4 (m_V + m_N)^2} \\ \sigma^{\rm SI}(\text{V-N})_{EFT} &= 32 \mu_{VN}^2 \Gamma_{\rm inv}^{\rm H} \frac{m_V^2 m_N^2 f_N^2}{v^2 \beta_{VH} m_H^7} \end{split}$$

 $\Gamma^{inv}(H \to VV) = \lambda_{HVV}^2 \frac{v^2 \beta_{VH} m_H^3}{512\pi m_V^4}$

Objection on EFT, 1st UV model

Phys.Lett.B.2014.09.040

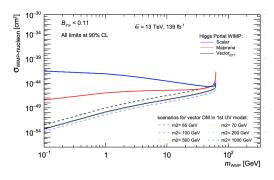
Arguments:

 EFT Lagrangian has mV entered arbitrarily.

need a UV model:

- V belongs to a U(1)' gauge group
- Need a dark Higgs sector with spontaneous symmetry breaking to generate m_V
- 2 additional parameters: mass of the new scalar (m_2) , its mixing angle (α) with the SM Higgs.

$$\begin{split} \mathcal{L}_{VDM} &= -\frac{1}{4}V_{\mu\nu}V^{\mu\nu} + D_{\mu}\Phi^{\dagger}D^{\mu}\Phi - \lambda_{\Phi}(\Phi^{\dagger}\Phi - \frac{v_{\Phi}^2}{2})^2 \\ &- \lambda_{\Phi H}(\Phi^{\dagger}\Phi - \frac{v_{\Phi}^2}{2})(H^{\dagger}H - \frac{v_{H}^2}{2}), \end{split}$$

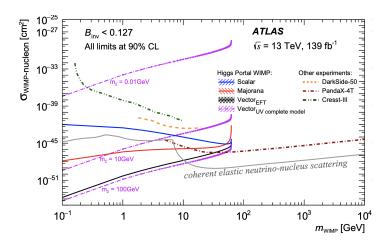

Full model decay width:

$$\Gamma_{\rm inv}^{\rm H} = \frac{g_X^2}{32\pi} \frac{m_H^3}{m_V^2} (1 - 4 \frac{m_V^2}{m_H^2} + 12 \frac{m_V^4}{m_H^4}) (1 - 4 \frac{m_V^2}{m_H^2})^{1/2},$$

Full model cross section:

$$\begin{split} \sigma^{\rm SI}(\text{V-N}) &= \cos^4(\theta) m_H^4 F(m_V, m_i, \nu) \times \sigma^{\rm SI}(\text{V-N})_{EFT}, \\ &\simeq \cos^4(\theta) (1 - \frac{m_H^2}{m^2}) \times \sigma^{\rm SI}(\text{V-N})_{EFT}, \end{split}$$

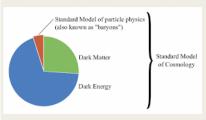
1st UV mode



Scenario:

- Small mixing angle lpha= 0.2
- Scan through m_2 in [65,1000]GeV
- Drop the region of [0,m_H/2] since Γ^H_{inv} does not count for H→ H₂H₂

- With different m₂ and α, full model limit can be very different in many order of magnitudes compared to EFT one.
- EFT results recovered if: $cos(\alpha) \approx 1$ and $m_2 >> m_1$
- Two more UV modes are also proposed and available in backup for discussion.


Our proposal adopted by ATLAS

• Our proposal has been adopted by ATLAS in its latest results on the Higgs to invisible search.; • arXiv:2202.07953

More General models

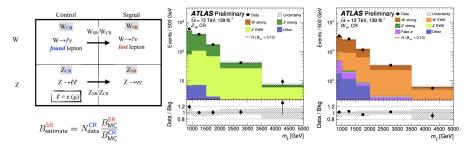
Dark Sector

Dark Sector states as "New Physics" beyond the SM

Need new force / interaction to connect SM to Dark Sector — portals. Weak couplings through kinetic mixing, Higgs or mass mixings

Dark Matter could just be one example of Dark Sector State

Conclusion


- The Higgs to invisible search at the LHC is presented:

 - Previous search results are reminded.
 The most recent searches by ATLAS and CMS are reviewed.
- In their interpretation results ATLAS and CMS removed the EFT VDM line.
- We showed that the EFT approach is still viable and we propose to reconsider it.
- We also do the extension to the low mass regime (below 1 GeV).
- Our proposal has been adopted by ATLAS in its latest results on the Higgs to invisible search.; • arXiv:2202.07953

BACKUP

BACKUP

V+jets Background Modelling: Slide from Ben

- Partially data-driven technique: transfer factors from one (W), two (Z) lepton control regions.
- ullet Collaborated with Sherpa authors to enhance high $m_{
 m ij}$ phase space in NLO V+jets MC.
- Signal region MC ($B_{\rm MC}^{\rm SR}$) rescaled by control region data/MC ratio ($N_{\rm data}^{\rm CR}/B_{\rm MC}^{\rm CR}$).
- Procedure done for each bin; separate transfer factors for W and Z processes.

2nd UV model, Reanalyse EFT

Phys.Lett.B 805 (2020)

The Higgs-portal for vector Dark Matter and the Effective Field Theory approach: a reappraisal

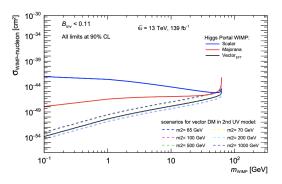
Giorgio Arcadi¹, Abdelhak Djouadi² and Marumi Kado^{3,4}

⁴ LAL, Université Paris-Sud, CNRS/IN2P3, Universit Paris-Saclay, Orsay, France.

- Same approach as 1st UV model Introduce a dark Higgs sector ϕ reproduce the masse of the vector through SSB.
- 2 additional parameters: mass of the new scalar (m₂), its mixing angle (α) with the SM Higgs.
- Corrected factor 32 is used instead of 8. (Verified with theorists.)

$$\begin{split} \mathcal{L} &= \frac{1}{2} \tilde{g} M_V (H_2 cos(\theta) - H sin(\theta)) V_\mu V^\mu + \frac{1}{8} \tilde{g}^2 (H^2 sin^2(\theta) \\ &- 2H H_2 sin(\theta) cos(\theta)) + H_2^2 cos^2(\theta) V_\mu V^\mu, \end{split}$$

Decay width and cross section:


$$(\Gamma_{
m inv}^{
m H})_{U(1)} = rac{ ilde{g}^2 sin^2(heta)}{32\pi} rac{m_H^3}{m_V^2} eta_{VH},$$

$$\begin{split} \sigma^{\rm SI}(\text{V-N}) &= 32 cos^2(\theta) \mu_{VN}^2 \frac{m_V^2}{m_H^3} \frac{BR(H \to VV) \Gamma_H^{tot}}{\beta_{VH}} \\ &\qquad \times (\frac{1}{m_2^2} - \frac{1}{m_H^2})^2 \frac{m_{N^2}}{v^2} |f_N^2|, \end{split}$$

Dipartimento di Matematica e Fisica and INFN, Università di Roma Tre, Via della Vasca Navale 84, 00146, Roma, Italy.

Université Savoie-Mont Blanc, USMB, CNRS, LAPTh, F-74000 Annecy, France.
 Department of Physics and INFN, "Sapienza" Università di Roma, Pizzale Aldo Moro 5,
 1-0018S Roma, Italy.

2nd UV model

- Small mixing angle
- scan through the additional scalar mass [65,1000]GeV
- similarly to 1st UV model, consider only [65,1000]GeV for m₂

- EFT result recovered if $sin(\theta) << 1$ and $m_2 >> m_H$
- EFT approach could represent a viable limit of the renormalizable model in large region of its parameter space.

Additional fermions UV model

$$\mathcal{L} \supset -\frac{1}{4}V_{\mu\nu}V^{\mu\nu} + (D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi) - V(\Phi) + \lambda_{P} |H|^{2}|\Phi|^{2}$$

Fermion terms

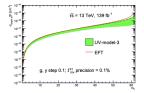
$$\mathcal{L} \supset -m \, \epsilon^{ab} \left(\psi_{1a} \chi_{1b} + \psi_{2a} \chi_{2b} \right) - m_n \, n_1 n_2$$

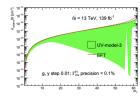
$$- \, y_{\psi} \, \epsilon^{ab} \left(\psi_{1a} H_b n_1 + \psi_{2a} H_b n_2 \right) - y_{\chi} \left(\chi_1 H^* n_2 + \chi_2 H^* n_1 \right) + h.c.$$

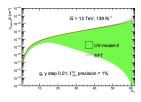
Phase space we used:

- the simplified case:

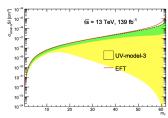
 - charged fermions & 2 heavier neutral states' masses >> the lightest neutral state mass ==> decouple.
- Model has no direct relation between of S_{IN} and In S_{IN} and In
- We need to find (mV, mf, g, y) satisfying BR_{inv} = 11% (current limit) ATLAS-CONF-2020-008
 - use the entire scanned phase space for (mf,q,y)


- ★ Available model constraints:
 - o mV < mH/2
 - o mf > mH/2
 - 0 < g, $y < 4\pi$ and $0 < g^2y < 40$
- \star Require an uncertainty 1(0.1)% on $\Gamma_{\rm inv}$

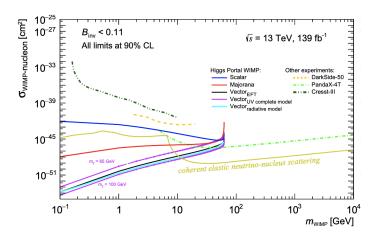

Ranges and steps of scanned variables


Variable	1st bin	last bin	Step
mV	1	62	1
mf	64	499	5
g	0	12	0.1(0.01)
у	0	12	0.1(0.01)

Additional fermions UV model


Upper limit on $\sigma_{\mathit{WIMP}-\mathit{N}}$ from different scans and precision of Γ^H_{inv}

Superimposition of the limits for a coarse scan on top of a fine scan, and vice versa.



Green: coarse scan with a step of 0.1 for g, y. Uncertainty 0.1% on Γ_{inv}

Yellow: fine scan with a step of 0.01 for g, y. Uncertainty 1% on Γ_{inv}

Proposal

- Re-introduce the EFT with the updated form factor uncertainty,
- Include the UV lines/bands for the 1st, 3rd models

- include the sub-GeV range for the WIMP masse.

Full SR selection

Table 2: Summary of the kinematic selections used to define the SR for both the MTR and the VTR categories.

Observable	MTR	VTR	
Choice of pair	leading- p_{T} jets	leading- <i>m</i> _{ij} jets	
Leading (subleading) jet	$p_{\rm T} > 80 (40) {\rm GeV}, \eta < 4.7$	$p_{\rm T} > 140 (70) {\rm GeV}, \eta < 4.7$	
$p_{ m T}^{ m miss}$	>250 GeV	$160 < p_{\rm T}^{\rm miss} < 250{ m GeV}$	
$\min(\Delta\phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}},ec{p}_{\mathrm{T}}^{\mathrm{jet}}))$	>0.5	>1.8	
$ \Delta \phi_{ m ij} $	<1.5	<1.8	
$m_{ m ii}$	>200 GeV	>900 GeV	
$ p_{\mathrm{T}}^{\mathrm{miss}}-\mathrm{calo}\;p_{\mathrm{T}}^{\mathrm{miss}} /p_{\mathrm{T}}^{\mathrm{miss}}$	< 0.5		
Leading/subleading jets $ \eta $ < 2.5	NHEF < 0.8 , CHEF > 0.1		
HF noise jet candidates	0 (using the requirements from Table 1)		
$ au_{ extsf{h}}$ candidates	$N_{\tau_h} = 0$ with $p_T > 20$ GeV, $ \eta < 2.3$		
b quark jet	$N_{\rm jet} = 0$ with $p_{\rm T} > 20$ GeV, DeepCSV Medium		
$\eta_{ m j1}\eta_{ m j2}$,	<0	
$ \Delta\eta_{ m jj} $		>1	
Electrons (muons)	$N_{e,u} = 0$ with $p_T > 1$	10GeV , $ \eta < 2.5(2.4)$	
Photons	$N_{\gamma} = 0$ with $p_{\rm T} >$	$> 15 { m GeV}, \eta < 2.5$	

Full SR selection

Table 6: The 95% CL upper limits on $(\sigma_H/\sigma_H^{SM})\mathcal{B}(H\to inv)$, assuming an SM Higgs boson with a mass of 125.38 GeV. The observed and median expected results are shown, along with the 68% and 95% interquartile ranges for each category and for the combinations.

Category	Observed	Median expected	65% expected	95% expected
2012–2016	0.33	0.21	[0.15, 0.29]	[0.11, 0.39]
VTR 2017	0.57	0.45	[0.32, 0.66]	[0.24, 0.94]
VTR 2018	0.44	0.34	[0.24, 0.49]	[0.18, 0.69]
VTR 2017+2018	0.40	0.28	[0.20, 0.40]	[0.15, 0.56]
MTR 2017	0.25	0.19	[0.14, 0.28]	[0.10, 0.40]
MTR 2018	0.24	0.15	[0.11, 0.22]	[0.08, 0.31]
MTR 2017+2018	0.17	0.13	[0.09, 0.18]	[0.07, 0.25]
all 2017	0.24	0.18	[0.13, 0.26]	[0.09, 0.37]
all 2018	0.25	0.15	[0.10, 0.21]	[0.08, 0.29]
all 2017+2018	0.18	0.12	[0.08, 0.17]	[0.06, 0.23]
2012-2018	0.18	0.10	[0.07, 0.14]	[0.05, 0.20]

Limit results ATLAS

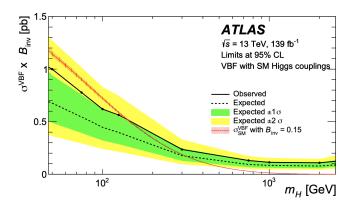


Figure 14: Upper limit on cross section times branching ratio to invisible particles for a scalar mediator as a function of its mass. For comparison the VBF cross section at NLO in QCD, i.e. without the electroweak corrections, for a particle with SM Higgs boson couplings, multiplied by a \mathcal{B}_{inv} value of 15%, is overlaid.