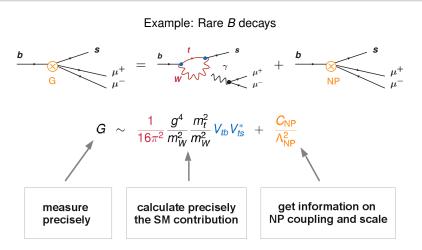
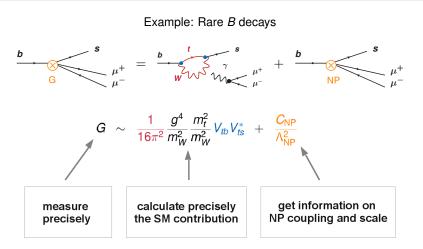
New Physics Models for the Flavor Anomalies

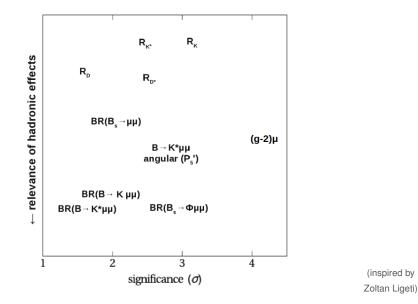

Wolfgang Altmannshofer waltmann@ucsc.edu

🗶 UC SANTA CRUZ

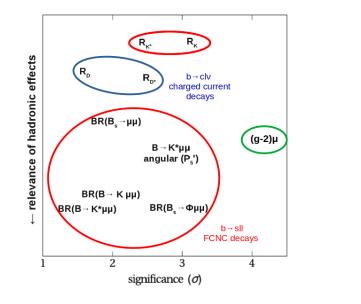

(partly based on whitepaper 2203.07726 with Jure Zupan)

Snowmass Summer Meeting 2022, Seattle, July 17 - 26, 2022

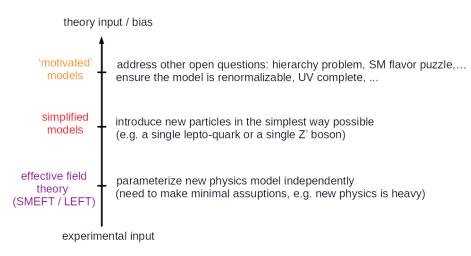
Basic Idea Behind Indirect Probes of New Physics


Basic Idea Behind Indirect Probes of New Physics

Anomalies at low energies can establish a new scale in particle physics \Rightarrow "no-loose theorems", "guaranteed" discoveries at colliders, ...

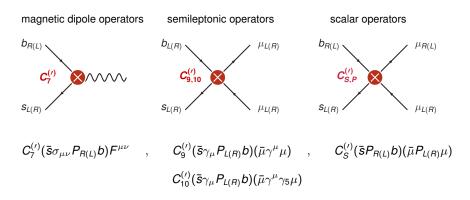

(at least in principle)

Summary of Flavor Anomalies


Wolfgang Altmannshofer (UCSC)

Summary of Flavor Anomalies

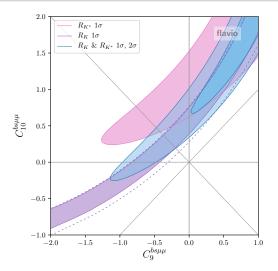
Bottom-Up Approach to the Anomalies



(inspired by Marco Nardecchia)

New Physics Models for the $b \rightarrow s\ell\ell$ Anomalies $(R_{\mathcal{K}}, R_{\mathcal{K}^*} \text{ and Friends})$

Model Independent Analysis


$$\mathcal{H}_{\text{eff}}^{b \to s} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i \left(C_i \mathcal{O}_i + C_i' \mathcal{O}_i' \right)$$

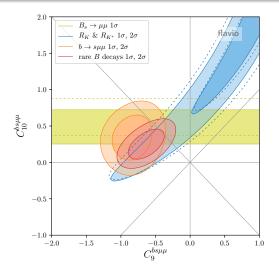
neglecting tensor operators and additional scalar operators (they are dimension 8 in SMEFT: Alonso, Grinstein, Martin Camalich 1407.7044)

Wolfgang Altmannshofer (UCSC) New Physics Models for the Flavor Anomalies

Wilson Coefficient Fits

 $C_9^{bs\mu\mu}(\bar{s}\gamma_{\alpha}P_Lb)(\bar{\mu}\gamma^{\alpha}\mu)$

 $C_{10}^{bs\mu\mu}(\bar{s}\gamma_{\alpha}P_{L}b)(\bar{\mu}\gamma^{\alpha}\gamma_{5}\mu)$


• LFU ratios prefer non-standard C₁₀, but large degeneracy

(+ many others)

Wolfgang Altmannshofer (UCSC)

Wilson Coefficient Fits

WA, Stangl 2103.13370

(+ many others)

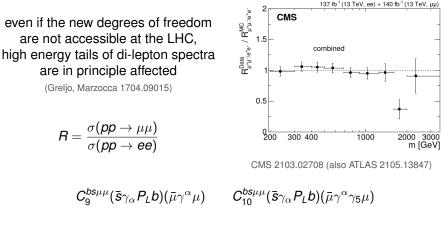
 $C_9^{bs\mu\mu}(\bar{s}\gamma_{\alpha}P_Lb)(\bar{\mu}\gamma^{lpha}\mu)$

 $C_{10}^{bs\mu\mu}(\bar{s}\gamma_{\alpha}P_{L}b)(\bar{\mu}\gamma^{\alpha}\gamma_{5}\mu)$

• LFU ratios prefer non-standard *C*₁₀, but large degeneracy

• $B_s \rightarrow \mu^+ \mu^-$ branching ratio shows slight preference for non-standard C_{10}

(with latest CMS update probably compatible with SM-like C_{10})


- $b \rightarrow s\mu\mu$ observables prefer non-standard C_9
- overall remarkable consistency

The New Physics Scale

unitarity bound
$$\frac{4\pi}{\Lambda_{NP}^2}(\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$$
 $\Lambda_{NP} \simeq 120 \text{ TeV} \times (C_9^{NP})^{-1/2}$ generic tree $\frac{1}{\Lambda_{NP}^2}(\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 35 \text{ TeV} \times (C_9^{NP})^{-1/2}$ MFV tree $\frac{1}{\Lambda_{NP}^2} V_{tb}V_{ts}^*(\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 7 \text{ TeV} \times (C_9^{NP})^{-1/2}$ generic loop $\frac{1}{\Lambda_{NP}^2} \frac{1}{16\pi^2}(\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 3 \text{ TeV} \times (C_9^{NP})^{-1/2}$ MFV loop $\frac{1}{\Lambda_{NP}^2} \frac{1}{16\pi^2} V_{tb}V_{ts}^*(\bar{s}\gamma_{\nu}P_Lb)(\bar{\mu}\gamma^{\nu}\mu)$ $\Lambda_{NP} \simeq 0.6 \text{ TeV} \times (C_9^{NP})^{-1/2}$

(MFV = Minimal Flavor Violation)

Model Independent Approach at the LHC

- flavor changing operators are probed up to scales of few TeV
- order of magnitude is missing to probe the $b \rightarrow s\ell\ell$ anomalies
- \rightarrow would need a 100 TeV collider

Non-Standard $\mu^+\mu^- \rightarrow bs$ at a Muon Collider

$$\frac{d\sigma(\mu^+\mu^- \to b\bar{s})}{d\cos\theta} = \frac{3}{16}\sigma(\mu^+\mu^- \to bs)\Big(1 + \cos^2\theta + \frac{8}{3}A_{\text{FB}}\cos\theta\Big)$$
$$\frac{d\sigma(\mu^+\mu^- \to \bar{b}s)}{d\cos\theta} = \frac{3}{16}\sigma(\mu^+\mu^- \to bs)\Big(1 + \cos^2\theta - \frac{8}{3}A_{\text{FB}}\cos\theta\Big)$$

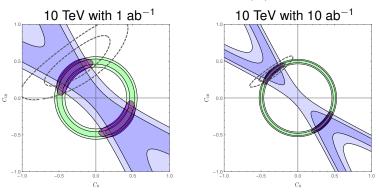
Total cross section increases with the center of mass energy

$$\sigma(\mu^+\mu^- \to bs) = \frac{G_F^2 \alpha^2}{8\pi^3} |V_{tb}V_{ts}^*|^2 \ s \left(|C_9|^2 + |C_{10}|^2\right)$$

Non-Standard $\mu^+\mu^- \rightarrow bs$ at a Muon Collider

$$\frac{d\sigma(\mu^+\mu^- \to b\bar{s})}{d\cos\theta} = \frac{3}{16}\sigma(\mu^+\mu^- \to bs)\Big(1 + \cos^2\theta + \frac{8}{3}A_{\text{FB}}\cos\theta\Big)$$
$$\frac{d\sigma(\mu^+\mu^- \to \bar{b}s)}{d\cos\theta} = \frac{3}{16}\sigma(\mu^+\mu^- \to bs)\Big(1 + \cos^2\theta - \frac{8}{3}A_{\text{FB}}\cos\theta\Big)$$

Total cross section increases with the center of mass energy


$$\sigma(\mu^+\mu^- \to bs) = \frac{G_F^2 \alpha^2}{8\pi^3} |V_{tb}V_{ts}^*|^2 \ s \left(|C_9|^2 + |C_{10}|^2\right)$$

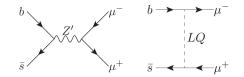
Forward backward asymmetry is sensitive to the chirality strcuture

$$m{A}_{ ext{FB}} = rac{-3 ext{Re}(C_9C_{10}^*)}{2(|C_9|^2+|C_{10}|^2)}$$

Need charge tagging to measure the forward backward asymmetry

Sensitivity Projections

WA, Gadam, Profumo 2203.07495 and in preparation


- branching ratio (green) and forward backward asymmetry (blue) are highly complementary
- 10 TeV muon collider has better sensitivity than the current and projected rare B decay results (dashed)

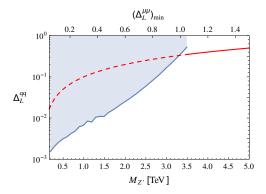
(see also Huang et al. 2103.01617; Asadi et al. 2104.05720

Azatov et al. 2205.13552 for related studies)

possible tree level explanations:

- ► Z' Bosons
- Leptoquarks

upper bounds on flavor violating couplings from B_s mixing imply upper bounds on the particle masses (e.g. Di Luzio et al. 1909.11087)


$$\blacktriangleright$$
 $m_{Z'} \lesssim g_{\mu} imes 5 {
m TeV}$

 \blacktriangleright $m_{LQ} \lesssim (30-60)$ TeV (depending on the leptoquark representation)

 \rightarrow a weakly coupled Z' might be in reach of the LHC

Simplified Z' Models

- "minimalistic" Z' setups are very hard to probe (need only bs and μμ coupling to explain the anomalies)
- direct searches at the LHC can be used to constrain couplings to light quark generations (WA, Straub 1411.3161)

 simple MFV ansatz for quark couplings already excluded by LHC searches (Greljo, Marzocca 1704.09015)

Origin of the Z'

- 1) Z' could be a vector resonance of a composite sector
- \rightarrow composite Higgs models
 - to explain the rare *B* decay anomalies, need a large amount of muon compositeness. Unusual, but not excluded.

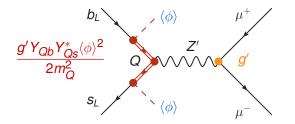
for an extensive list of references see WA, Zupan 2203.07726

(let us know if your favorite model is missing ...)

Origin of the Z'

- 1) Z' could be a vector resonance of a composite sector
- \rightarrow composite Higgs models
 - to explain the rare *B* decay anomalies, need a large amount of muon compositeness. Unusual, but not excluded.
- Z' could be the gauge boson of a spontaneously broken gauge symmetry
- want to couple the Z' to muons
- → most obvious choice is a U(1) that includes muon number e.g. $B_3 - L_\mu$, $L_\mu - L_\tau$, ...

(note: if generation specific baryon number is gauged, some quark Yukawa couplings are not allowed at the renormalizable level; connection to SM flavor puzzle?)

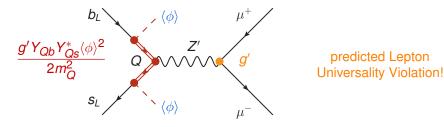

for an extensive list of references see WA, Zupan 2203.07726

(let us know if your favorite model is missing ...)

My Favorite Z' Model

Z' based on gauging $L_{\mu}-L_{\tau}$ (He, Joshi, Lew, Volkas PRD 43, 22-24) with effective flavor violating couplings to quarks

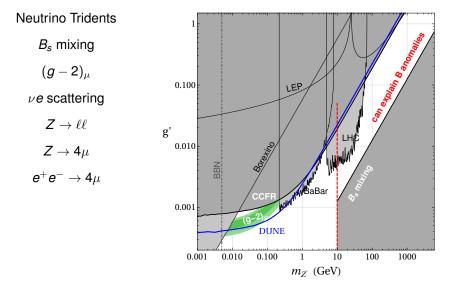
WA, Gori, Pospelov, Yavin 1403.1269; WA, Yavin 1508.07009



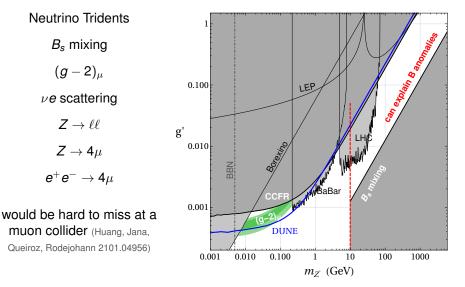
Q: heavy vectorlike fermions with mass $\sim 1 - 10$ TeV ϕ : scalar that breaks $L_{\mu} - L_{\tau}$

My Favorite Z' Model

Z' based on gauging $L_{\mu}-L_{\tau}$ (He, Joshi, Lew, Volkas PRD 43, 22-24) with effective flavor violating couplings to quarks


WA, Gori, Pospelov, Yavin 1403.1269; WA, Yavin 1508.07009

Q: heavy vectorlike fermions with mass $\sim 1 - 10$ TeV ϕ : scalar that breaks $L_{\mu} - L_{\tau}$


Probing the $L_{\mu} - L_{\tau}$ Parameter Space

WA, Gori, Martin-Albo, Sousa, Wallbank 1902.06765

Probing the $L_{\mu} - L_{\tau}$ Parameter Space

WA, Gori, Martin-Albo, Sousa, Wallbank 1902.06765

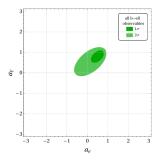
Extending the $L_{\mu} - L_{\tau}$ Model

(self imposed) rules:

- Renormalizable SM Yukawa couplings are allowed.
- Absence of lepton flavor violation.
- At most 3 SM singlets (= RH neutrinos) to soak up gauge anomalies.
- \Rightarrow There is a 4 parameter family of possible $U(1)_X$ gauge symmetries

$$T_X = a_Y T_Y - a_e T_{B/3 - L_e} - a_\mu T_{B/3 - L_\mu} - a_ au T_{B/3 - L_ au}$$

Extending the $L_{\mu} - L_{\tau}$ Model


(self imposed) rules:

- Renormalizable SM Yukawa couplings are allowed.
- Absence of lepton flavor violation.
- At most 3 SM singlets (= RH neutrinos) to soak up gauge anomalies.
- \Rightarrow There is a 4 parameter family of possible $U(1)_X$ gauge symmetries

$$T_X = a_Y T_Y - a_e T_{B/3 - L_e} - a_\mu T_{B/3 - L_\mu} - a_\tau T_{B/3 - L_\tau}$$

$$egin{array}{rcl} C_9^{bs\ell\ell} &\propto & a_\ell - rac{3}{4}a_Y \ C_{10}^{bs\ell\ell} &\propto & -rac{1}{4}a_Y \end{array}$$

- Axial vector currents are necessarily lepton flavor universal
- Axial vector currents come with tree level Z-Z' mixing

WA, Davighi, Nardecchia 1909.02021

Wolfgang Altmannshofer (UCSC)

Simplified Leptoquark Models

Spin	G _{SM}	Name	Characteristic process	First time used for $b o s \mu \mu$
0	$(\bar{3},1)_{1/3}$	S ₁	$b_{L} \xrightarrow{\nu} S_{1} \xrightarrow{f} \mu_{L}$	Bauer, Neubert, arXiv:1511.01900
0	$(\bar{3},3)_{1/3}$	S ₃	b_L μ_L S_3 μ_L μ_L	Hiller, Schmaltz, arXiv:1408.1627
0	(3,2) _{7/6}	R ₂	$b_L \xrightarrow{t} R_2 \mu_L$	Bečirević, Sumensari, arXiv:1704.05835
1	(3,1) _{2/3}	U ₁	$b_L \qquad \mu_L \qquad \mu_L \qquad \mu_L$	Barbieri et al., arXiv:1512.01560
1	(3,3) _{2/3}	U ₃	$b_L \xrightarrow{U_3} \mu_L$	Fajfer, Košnik, arXiv:1511.06024

from talk by Peter Stangl LF(U)V workshop, Zurich, July 4

(the loop level leptoquarks struggle to accommodate the anomalies)

Wolfgang Altmannshofer (UCSC)

New Physics Models for the Flavor Anomalies

Leptoquark Signatures at the LHC

e.g. Allanach, Gripaios, You 1710.06363, Hiller, Loose, Nisandzic 1801.09399

• Leptoquarks are pair produced through QCD interactions


 $pp
ightarrow ext{LQ} ext{LQ}
ightarrow j(b) \mu^+ j(b) \mu^-$

 Leptoquarks can be singly produced through their couplings to quarks/leptons

 $pp \rightarrow LQ \ \mu \rightarrow j(b)\mu^+\mu^-$

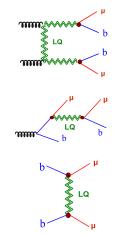
 Leptoquarks contribute to di-muon production

$$pp \rightarrow \mu^+\mu^-$$

Leptoquark Signatures at the LHC

e.g. Allanach, Gripaios, You 1710.06363, Hiller, Loose, Nisandzic 1801.09399

 Leptoquarks are pair produced through QCD interactions


 $pp
ightarrow ext{LQ} ext{LQ}
ightarrow j(b) \mu^+ j(b) \mu^-$

 Leptoquarks can be singly produced through their couplings to quarks/leptons

 $pp \rightarrow LQ \ \mu \rightarrow j(b)\mu^+\mu^-$

 Leptoquarks contribute to di-muon production

$$\textit{pp} \rightarrow \mu^+ \mu^-$$

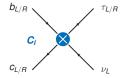
Also: excellent prospects to see these leptoquarks at a muon collider

Huang, Jana, Queiroz, Rodejohann 2103.01617, Asadi, Capdevilla, Cesarotti, Homiller 2104.05720

Model Building Challenges for Leptoquarks

- Vector leptoquarks beg for a UV completion
- ightarrow Vector leptoquarks could be resonances of a composite sector
- → The U₁ vector leptoquark could be the gauge boson of an SU(4) gauge symmetry (Di Luzio et al 1708.08450; Calibbi et al. 1709.00692; Bordone et al. 1712.01368; ...)
 - The *S*₃ scalar leptoquark can couple to all lepton generations and also to di-quarks
- \rightarrow strong constraints from LFV processes and proton decay
- $\rightarrow\,$ introduce a protection mechanism, like gauged muon number leptoquark $\rightarrow\,$ "muoquark"

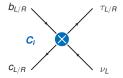
(Hambye, Heeck 1712.04871; Davighi, Kirk, Nardecchia 2007.15016;


```
Greljo et al. 2103.13991, 2107.07518; ...)
```

for a much more extensive list of references see WA, Zupan 2203.07726 (let us know if your favorite model is missing ...)

New Physics Models for the $b \rightarrow c \tau \nu$ Anomalies (R_D, R_{D^*})

Model Independent Analysis


$$\mathcal{H}_{ ext{eff}} = rac{4G_F}{\sqrt{2}} V_{cb} \mathcal{O}_{V_L} + rac{1}{\Lambda^2} \sum_i C_i \mathcal{O}_i$$

 O_i = contact interactions with vector, scalar or tensor currents

Model Independent Analysis


$$\mathcal{H}_{ ext{eff}} = rac{4G_F}{\sqrt{2}} V_{cb} \mathcal{O}_{V_L} + rac{1}{\Lambda^2} \sum_i C_i \mathcal{O}_i$$

 $O_i = \text{contact interactions}$ with vector, scalar or tensor currents

rescaling of the SM vector operator fits the data best

combinations of operators are also possible

(also Murgui et al. 1904.09311, Asadi, Shih 1905.03311,

Cheung et al. 2002.07272, ...)

Wolfgang Altmannshofer (UCSC)

New Physics Models for the Flavor Anomalies

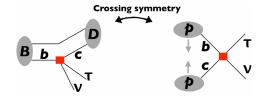
New Physics Scale

unitarity bound
$$\frac{4\pi}{\Lambda_{NP}^2} (\bar{c}\gamma_{\nu}P_Lb)(\bar{\tau}\gamma^{\nu}P_L\nu)$$
 $\Lambda_{NP} \simeq 8.4 \text{ TeV}$ generic tree $\frac{1}{\Lambda_{NP}^2} (\bar{c}\gamma_{\nu}P_Lb)(\bar{\tau}\gamma^{\nu}P_L\nu)$ $\Lambda_{NP} \simeq 2.4 \text{ TeV}$ MFV tree $\frac{1}{\Lambda_{NP}^2} V_{cb} (\bar{c}\gamma_{\nu}P_Lb)(\bar{\tau}\gamma^{\nu}P_L\nu)$ $\Lambda_{NP} \simeq 0.5 \text{ TeV}$

(MFV = Minimal Flavor Violation)

New Physics Scale

unitarity bound
$$\frac{4\pi}{\Lambda_{NP}^2} (\bar{c}\gamma_{\nu} P_L b)(\bar{\tau}\gamma^{\nu} P_L \nu)$$
 $\Lambda_{NP} \simeq 8.4 \text{ TeV}$ generic tree $\frac{1}{\Lambda_{NP}^2} (\bar{c}\gamma_{\nu} P_L b)(\bar{\tau}\gamma^{\nu} P_L \nu)$ $\Lambda_{NP} \simeq 2.4 \text{ TeV}$ MFV tree $\frac{1}{\Lambda_{NP}^2} V_{cb} (\bar{c}\gamma_{\nu} P_L b)(\bar{\tau}\gamma^{\nu} P_L \nu)$ $\Lambda_{NP} \simeq 0.5 \text{ TeV}$

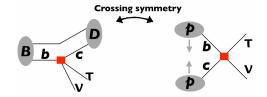

(MFV = Minimal Flavor Violation)

rather low scale \rightarrow model building is non-trivial

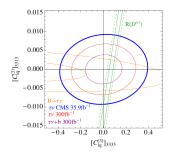
Model Independent Tests at the LHC

Expect non-standard mono-tau production at the LHC

(possibly in association with b-jets)



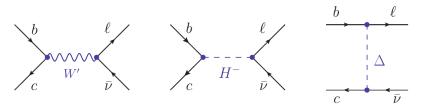
WA, Dev, Soni 1704.06659; Greljo et al. 1811.07920; Marzocca et al. 2008.07541; ...


Model Independent Tests at the LHC

Expect non-standard mono-tau production at the LHC

(possibly in association with b-jets)

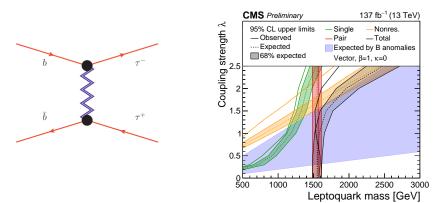
WA, Dev, Soni 1704.06659; Greljo et al. 1811.07920; Marzocca et al. 2008.07541; ...



- Collider and low energy sensitivities are complementary
- High-luminosity LHC can probe large parts of parameter space

Simplified Models for $R_{D^{(*)}}$

Need a tree level mediator: 3 options


- 1) W' bosons excluded by direct searches
- 2) Charged Higgs bosons strongly constrained by $B_c \rightarrow \tau \nu$ and $B \rightarrow D^{(*)} \tau \nu$ kinematic distributions
- 3) Leptoquarks that couple dominantly to the 3rd generation can work.

Collider Signature

 Robust collider signature of leptoquarks that explain R_D and R_{D*}: non-standard di-tau production at high invariant mass

Faroughy et al. 1609.07138

CMS-PAS-EXO-19-016

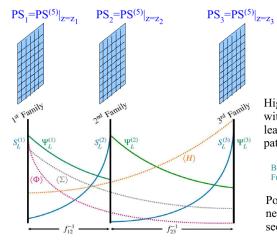
Combined Explanations of the B anomalies

- ► U_1 leptoquark can simultaneously explain $R_{K^{(*)}}$ and $R_{D^{(*)}}$ (recent studies: Cornella et al. 2103.16558; Angelescu et al. 2103.12504)
- *U*₁ could be the remnant of an extended gauge group: "4321 models", (Pati-Salam)³ models (Di Luzio et al. 1708.08450; Bordone et al. 1712.01368, ...)
- full models typically have many more collider accessible states: coloron, Z', vector-like fermions

Model	$R_{K^{(\ast)}}$	$R_{D^{(*)}}$
S_3 ($\bar{3}, 3, 1/3$)	✓	×
S_1 (3 , 1 , 1/3)	×	\checkmark
R_2 (3, 2, 7/6)	×	\checkmark
U_1 (3 , 1 , 2/3)	✓	✓
U_3 (3 , 3 , 2/3)	✓	×

Combined Explanations of the B anomalies

- ► U_1 leptoquark can simultaneously explain $R_{K^{(*)}}$ and $R_{D^{(*)}}$ (recent studies: Cornella et al. 2103.16558; Angelescu et al. 2103.12504)
- ► U₁ could be the remnant of an extended gauge group: "4321 models", (Pati-Salam)³ models (Di Luzio et al. 1708.08450; Bordone et al. 1712.01368, ...)
- full models typically have many more collider accessible states: coloron, Z', vector-like fermions


Model	$R_{K^{(\ast)}}$	$R_{D^{(*)}}$
S_3 ($\bar{3}, 3, 1/3$)	\checkmark	×
S_1 (3 , 1 , 1/3)	×	~
R_2 (3, 2, 7/6)	×	✓
U_1 (3 , 1 , 2/3)	✓	✓
U_3 (3 , 3 , 2/3)	\checkmark	×

also attempts for simultaneous explanations in RPV SUSY (several sfermions act like scalar leptoquarks)
 Deshpande, He, 1608.04817; WA, Dev, Soni 1704.06659; Earl, Gregoire 1806.01343;
 Trifinopoulos 1807.01638; WA, Dev, Soni, Sui 2002.12910; Dev, Soni, Xu 2106.15647; ...

► look for sbottoms, stops, staus, sneutrinos with RPV couplings

Fleshed Out (Pati-Salam)³ Model

Flavor anomalies from the U_1 leptoquark of (Pati-Salam)³

Flavor ↔ special position (topological defect) in an extra (compact) space-like dimension Dvali & Shifman. '00

Higgs and SU(4)-breaking fields with oppositely-peaked profiles, leading to the desired flavor pattern for masses & anomalies

Bordone, Cornella, Fuentes-Martin, GI '17 Fuentes-Martin, GI, Pages, Stefanek '20

Possible to implement anarchic neutrino masses via an inverse see-saw mechanism

(talk by Gino Isidori @ Beyond the Anomalies workshop, Durham 2021)

The B decay anomalies could be signs of new physics at collider accessible scales (Z') bosons or leptoquarks) The B decay anomalies could be signs of new physics at collider accessible scales (Z' bosons or leptoquarks)

 R_K, R_{K^*} and friends

- $\blacktriangleright ~\Lambda_{NP} \sim 35 \text{ TeV}$
- some scenarios are in the reach of the LHC; but the generic scale is higher
- would like a 100 TeV collider and/or a muon collider to systematically explore NP models

Wolfgang Altmannshofer (UCSC)

The B decay anomalies could be signs of new physics at collider accessible scales (Z' bosons or leptoquarks)

 R_K, R_{K^*} and friends

 $\blacktriangleright ~\Lambda_{NP} \sim 35 \text{ TeV}$

Summary

- some scenarios are in the reach of the LHC; but the generic scale is higher
- would like a 100 TeV collider and/or a muon collider to systematically explore NP models

 $\blacktriangleright \ \Lambda_{NP} \sim 2 \ \text{TeV}$

- should have already seen something at the LHC
- new physics should be around the corner

