

Searching for New Physics at High-Energy Future Muon Colliders Cari Cesarotti, MIT Snowmass Cross Frontier, EF-RF-TF RF1 July 21, 2022

(2104.05720) P. Asadi, R. Capdevilla, S. Homiller

(2202.12302) S. Homiller, R. Mishra, M. Reece

Expand energy & intensity frontiers

Expand energy & intensity frontiers

Develop complementary physics program to existing experiments

Expand energy & intensity frontiers

Develop complementary physics program to existing experiments

Construction of a new collider

Expand energy & intensity frontiers

Develop complementary physics program to existing experiments

Construction of a new collider

Muon Colliders (μC) LHC (pp) μC

) μC

Muon Colliders (μC) LHC (pp)• $\sqrt{\hat{s}} \ll \sqrt{s}$ • $\sqrt{\hat{s}} \simeq \sqrt{s}$

Muon Colliders (μC) LHC (pp)• $\sqrt{\hat{s}} \ll \sqrt{s}$ • $\sqrt{\hat{s}} \simeq \sqrt{s}$

• Color production

• Electroweak production

Muon Colliders (μC) LHC (pp) μ • $\sqrt{\hat{s}} \ll \sqrt{s}$ • $\sqrt{\hat{s}} \simeq \sqrt{s}$

- Color production Electrowe
- Hadronized final states Small QCD background

20

5

10

15

 $\sqrt{s_{\mu}}$ [TeV]

20

25

Muon Colliders (μC) LHC (pp)

• Color production

• $\sqrt{\hat{s}} \ll \sqrt{s}$

- Hadronized final states Small QCD background
 - Less power loss (10^{-8})

• $\sqrt{\hat{s}} \simeq \sqrt{s}$

 μC

 e^+e^-

• Electroweak production

• Synchrotron radiation

Muon Colliders (μC) LHC (pp)

• $\sqrt{\hat{s}} \ll \sqrt{s}$

- Hadronized final states Small QCD background
 - Less power loss (10^{-8})
 - 2nd gen couplings

• $\sqrt{\hat{s}} \simeq \sqrt{s}$

 μC

 e^+e^-

• Electroweak production

- Synchrotron radiation
- 1st gen couplings

2104.05720 CC, P. Asadi, R Capdevilla, S. Homiller

Future multi-TeV μC provides a complementary physics program

2104.05720 CC, P. Asadi, R Capdevilla, S. Homiller

Leptoquarks @ Collider Vector Bosons @ BD

Leptoquarks @ Collider Vector Bosons @ BD

Leptoquarks @ μC explores complementary parameter space to existing experiments

2104.05720 CC, P. Asadi, R Capdevilla, S. Homiller

 $\mathscr{L}_{U_1} \supset \frac{\mathscr{g}_U}{\sqrt{2}} U_1^{\mu} \left(\beta_L^{ij} \bar{Q}_L^i \gamma_{\mu} L_L^i + \text{h.c.} \right)$

2104.05720 CC, P. Asadi, R Capdevilla, S. Homiller

 $\beta_R^{ij} = 0, \ \beta_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \beta_L^{22} & \beta_L^{23} \\ 0 & \beta_L^{32} & \beta_L^{33} \end{pmatrix}$

 $\mathscr{L}_{U_1} \supset \frac{\mathscr{g}_U}{\sqrt{2}} U_1^{\mu} \left(\beta_L^{ij} \bar{Q}_L^i \gamma_{\mu} L_L^i + \text{h.c.} \right)$

First gen. couplings constrained by low energy experiments (1603.04993) 2104.05720 CC, P. Asadi, R Capdevilla, S. Homiller

 $\mathscr{L}_{U_1} \supset \frac{\mathscr{g}_U}{\sqrt{2}} U_1^{\mu} \left(\beta_L^{ij} \bar{Q}_L^i \gamma_{\mu} L_L^i + \text{h.c.} \right)$

2104.05720 CC, P. Asadi, R Capdevilla, S. Homiller

 $\mathscr{L}_{U_1} \supset \frac{\mathscr{B}_U}{\sqrt{2}} U_1^{\mu} \left(\beta_L^{ij} \bar{Q}_L^i \gamma_{\mu} L_L^i + \text{h.c.} \right)$

2104.05720 CC, P. Asadi, R Capdevilla, S. Homiller

 $\beta_L = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \beta_L^{22} & \beta_L^{23} \\ 0 & \beta_L^{32} & \beta_L^{33} \end{pmatrix}$

2104.05720 CC, P. Asadi, R Capdevilla, S. Homiller

$U_1 = (3,1)_{2/3}$

$\sqrt{s} = 3$ TeV $m_{U_1} \in (1,50)$ TeV

2104.05720 CC, P. Asadi, R Capdevilla, S. Homiller

$U_1 = (3,1)_{2/3}$

$\sqrt{s} = 3$ TeV $m_{U_1} \in (1,50)$ TeV

Scenarios	1	2	3	4
$\left(\beta_L^{22},\beta_L^{23},\beta_L^{33}\right)$	(0, 0, 0)	$(\beta_L^{32}, 0, 0)$	(0, 0.1, 1)	$(\beta_L^{32}, 0.1, 1)$

2104.05720 CC, P. Asadi, R Capdevilla, S. Homiller

$U_1 = (3,1)_{2/3}$

$\sqrt{s} = 3 \text{ TeV}$ $m_{U_1} \in (1,50) \text{ TeV}$

Final states of U_1 decay

Scenarios	1	
$\left(\beta_L^{22},\beta_L^{23},\beta_L^{33}\right)$	(0, 0, 0)	

2104.05720 CC, P. Asadi, R Capdevilla, S. Homiller

$U_1 = (3,1)_{2/3}$

$\sqrt{s} = 3 \text{ TeV}$ $m_{U_1} \in (1,50) \text{ TeV}$

2	3	4
$(\beta_L^{32}, 0, 0)$	(0, 0.1, 1)	$(\beta_L^{32}, 0.1, 1)$

Leptoquarks Flavor observables

Observable	Experimental Bounds	Relevant Couplings
$R_{K^{(*)}}$	$R_{K} = 0.846^{+0.044}_{-0.041}$ $R_{K^*} = 0.685^{+0.113}_{-0.069} \pm 0.047$ [131, 132]	$\beta_L^{32}\times\beta_L^{22}$
$BR \left(B_s \to \mu \mu \right)$	$3.09^{+0.48}_{-0.44} imes 10^{-9}$ [133–136]	$eta_L^{32} imes eta_L^{22}$
$R_{D^{(*)}}$	$R_D = 0.340 \pm 0.030$ $R_{D^*} = 0.295 \pm 0.014$ [137]	$\beta_L^{33}\times\beta_L^{23}$
$R_D^{\mu/e}$	$0.995 \pm 0.022 \pm 0.039$ [138]	$eta_L^{32} imes eta_L^{22}$
$BR \left(\tau \to \mu \gamma \right)$	$< 4.4 \times 10^{-8}$ [139]	$eta_L^{33} imes eta_L^{32}$
$BR\left(\tau \to \mu\phi\right)$	$< 8.4 imes 10^{-8}$	$\beta_L^{23}\times\beta_L^{22}$
$BR\left(D_s\to\mu\nu\right)$	$< 5.49 \times 10^{-3}$	$\beta_L^{22}\times\beta_L^{22}$
$\mathrm{BR}\left(D_s \to \tau \nu\right)$	$< 5.48 \times 10^{-2}$	$eta_L^{23} imes eta_L^{23}$
$BR \left(B \to K \tau \mu \right)$	$< 2.8 imes 10^{-5}$	$\beta_L^{32} \times \beta_L^{23} \beta_L^{33} \times \beta_L^{22}$
$BR \left(B_s \to \tau \mu \right)$	$< 4.2 imes 10^{-5}$	$\beta_L^{32} \times \beta_L^{23} \beta_L^{33} \times \beta_L^{22}$
$\mathrm{BR}\left(B_s \to \tau\tau\right)$	$< 2.1 imes 10^{-3}$	$\beta_L^{33} imes \beta_L^{23}$

$U_1 = (3,1)_{2/3}$

2103.16558

Leptoquarks Flavor observables

Observable	Experimental Bounds	Relevant Couplings
$R_{K^{(*)}}$	$R_{K} = 0.846^{+0.044}_{-0.041}$ $R_{K^*} = 0.685^{+0.113}_{-0.069} \pm 0.047$ [131, 132]	$\beta_L^{32}\times\beta_L^{22}$
$\mathrm{BR}\left(B_s \to \mu \mu\right)$	$3.09^{+0.48}_{-0.44} imes 10^{-9}$ [133–136]	$eta_L^{32} imes eta_L^{22}$
$R_{D^{(*)}}$	$R_D = 0.340 \pm 0.030$ $R_{D^*} = 0.295 \pm 0.014$ [137]	$\beta_L^{33}\times\beta_L^{23}$
$R_D^{\mu/e}$	$0.995 \pm 0.022 \pm 0.039$ [138]	$\beta_L^{32}\times\beta_L^{22}$
$\mathrm{BR}\left(\tau \to \mu\gamma\right)$	$< 4.4 \times 10^{-8}$ [139]	$eta_L^{33} imes eta_L^{32}$
$\mathrm{BR}\left(\tau \to \mu \phi\right)$	$< 8.4 \times 10^{-8}$	$\beta_L^{23}\times\beta_L^{22}$
$\mathrm{BR}\left(D_s\to\mu\nu\right)$	$< 5.49 \times 10^{-3}$	$\beta_L^{22}\times\beta_L^{22}$
$\mathrm{BR}\left(D_s\to\tau\nu\right)$	$< 5.48 \times 10^{-2}$	$\beta_L^{23}\times\beta_L^{23}$
$BR \left(B \to K \tau \mu \right)$	$< 2.8 imes 10^{-5}$	$\beta_L^{32} \times \beta_L^{23} \beta_L^{33} \times \beta_L^{22}$
$\mathrm{BR}\left(B_s \to \tau \mu\right)$	$< 4.2 imes 10^{-5}$	$\beta_L^{32} \times \beta_L^{23} \beta_L^{33} \times \beta_L^{22}$
$\mathrm{BR}\left(B_s \to \tau\tau\right)$	$< 2.1 imes 10^{-3}$	$eta_L^{33} imes eta_L^{23}$

2103.16558

Production Modes

2104.05720 CC, P. Asadi, R Capdevilla, S. Homiller

Simulated with MG5

Leptoquarks 5σ confidence limits $3 \text{ TeV } \mu C$ $(\beta_L^{22}, \beta_L^{23}, \beta_L^{33}) = (\beta_L^{32}, 0.1, 1)$

2104.05720 CC, P. Asadi, R Capdevilla, S. Homiller

Leptoquarks 5σ confidence limits $3 \text{ TeV } \mu C$ $\left(\beta_L^{22}, \beta_L^{23}, \beta_L^{33}\right) = (\beta_L^{32}, 0.1, 1)$

2104.05720 CC, P. Asadi, R Capdevilla, S. Homiller

Leptoquarks 5σ confidence limits $3 \text{ TeV } \mu C$ $(\beta_L^{22}, \beta_L^{23}, \beta_L^{33}) = (\beta_L^{32}, 0.1, 1)$

$$R_K = \frac{B \to K \mu^+ \mu^-}{B \to K e^+ e^-}$$

2104.05720 CC, P. Asadi, R Capdevilla, S. Homiller

A beam dump experiment at the μ C allows us to push into both the energy and the intensity frontier

A beam dump experiment at the μ C allows us to push into both the energy and the intensity frontier

Can probe NP scenarios with:

Can probe NP scenarios with:

• Very weak couplings

A beam dump experiment at the μC allows us to push into both the energy and the intensity frontier

Can probe NP scenarios with: • Very weak couplings • Couplings to 2nd gen. leptons

A beam dump experiment at the μC allows us to push into both the energy and the intensity frontier

Can probe NP scenarios with:

- Very weak couplings
- Couplings to 2nd gen. leptons
- Masses $\leq 100 \text{ GeV}$

A beam dump experiment at the μC allows us to push into both the energy and the intensity frontier

We search for vector new physics signals at μC beam dump

We search for vector new physics signals at μC beam dump

 $\sqrt{s} \sim \text{TeV}$

$m_{\rm NP} \sim 10 { m MeV} - 10 { m GeV}$

• Dark Photon • Gauged Flavor Symmetry $L_{\mu} - L_{\tau}$

- We search for vector new physics signals at μC beam dump
 - $\sqrt{s} \sim \text{TeV}$
 - $m_{\rm NP} \sim 10 {
 m MeV} 10 {
 m GeV}$
 - We consider 2 models:

New physics Z' Scenarios Dark Photon -

$$\begin{split} & - L_{\mu} - L_{\tau} \\ & \mathscr{L}_{V} \supset \mp i g Z'_{\mu} \sum_{l \in \mu, \tau} \left(\bar{l} \gamma^{\mu} l + \bar{\nu}_{l} \sigma^{\mu} \nu_{l} \right) \end{split}$$

μ

 $\mathcal{L}_{\mu} - \mathcal{L}_{\tau}$ $\mathcal{L}_{V} \supset \mp ig Z'_{\mu} \sum_{l \in \mu, \tau} \left(\bar{l} \gamma^{\mu} l + \bar{\nu}_{l} \sigma^{\mu} \nu_{l} \right)$

Beam Dump Setup L_{dec} $L_{\rm sh}$

 $\frac{dN}{dx} = N_{\mu} \frac{N_0 \rho l_0}{A} \frac{d\sigma}{dx} \left(e^{L_{tar}/l_0} - 1 \right) e^{-(L_{tar} + L_{sh})/l_0} \left(1 - e^{-L_{dec}/l_0} \right)$

 $\frac{dN}{dx} = N_{\mu} \frac{N_0 \rho l_0}{A} \frac{d\sigma}{dx} \left(e^{L_{tar}/l_0} - 1 \right) e^{-(L_{tar} + L_{sh})/l_0} \left(1 - e^{-L_{dec}/l_0} \right)$

Signal events

Deam

Number of μ

Deam

 $\frac{dN}{dx} = N_{\mu} \frac{N_0 \rho l_0}{A} \frac{d\sigma}{dx} \left(e^{L_{tar}/l_0} - 1 \right) e^{-(L_{tar} + L_{sh})/l_0} \left(1 - e^{-L_{dec}/l_0} \right)$

Detector material

Deam

$\frac{dN}{dx} = N_{\mu} \frac{N_0 \rho l_0}{A} \frac{d\sigma}{dx} \left(e^{L_{tar}/l_0} - 1 \right) e^{-(L_{tar} + L_{sh})/l_0} \left(1 - e^{-L_{dec}/l_0} \right)$ Production cross

section

 $\frac{dN}{dx} = N_{\mu} \frac{N_0 \rho l_0}{A} \frac{d\sigma}{dx} \left(e^{L_{tar}/l_0} - 1 \right) e^{-(L_{tar} + L_{sh})/l_0} \left(1 - e^{-L_{dec}/l_0} \right)$ Probability of decay

Deam

Dark Photon Reach

 $\mathscr{L}_V \supset -i\epsilon e Z'_{\mu} \sum \bar{l}\gamma^{\mu} l$ $l \in e, \mu, \tau$

Water target $L_{tar} = 10 \text{ m}$ $L_{\rm sh} = 10~{\rm m}$ $L_{\text{dec}} = 100 \text{ m}$

Dark Photon Reach

Dark Photon Reach

$L_{\mu} - L_{\tau}$ Reach

 $m_{Z'}$ [GeV]

 $\mathscr{L}_V \supset \mp i g Z'_{\mu} \sum \left(\bar{l} \gamma^{\mu} l + \bar{\nu}_l \sigma^{\mu} \nu_l \right)$ $l \in \mu, \tau$

Water targ

$$L_{tar} = 10$$

 $L_{sh} = 10$ m
 $L_{dec} = 100$

Future multi-TeV μC provide a complementary and robust physics program

Leptoquarks are a motivated and novel signal to consider at μC

Future multi-TeV μC provide a complementary and robust physics program

Leptoquarks are a motivated and novel signal to consider at μC We should take advantage of a TeV μC to probe intensity frontier with a μBD

Future multi-TeV μC provide a complementary and robust physics program

We should take advantage of a TeV μC to probe intensity

2104.05720 CC, P. Asadi, R Capdevilla, S. Homiller

- Future multi-TeV μC provide a complementary and robust physics program
- Leptoquarks are a motivated and novel signal to consider at μC
 - frontier with a μBD
 - Progress can be made in studies along the way

Backups

Leptoquarks Flavor observables

Observable	Experimental Bounds	Relevant Couplings
$R_{K^{(*)}}$	$R_{K} = 0.846^{+0.044}_{-0.041}$ $R_{K^*} = 0.685^{+0.113}_{-0.069} \pm 0.047$ [131, 132]	$\beta_L^{32}\times\beta_L^{22}$
$BR \left(B_s \to \mu \mu \right)$	$3.09^{+0.48}_{-0.44} imes 10^{-9}$ [133–136]	$eta_L^{32} imes eta_L^{22}$
$R_{D^{(*)}}$	$R_D = 0.340 \pm 0.030$ $R_{D^*} = 0.295 \pm 0.014$ [137]	$\beta_L^{33}\times\beta_L^{23}$
$R_D^{\mu/e}$	$0.995 \pm 0.022 \pm 0.039$ [138]	$eta_L^{32} imes eta_L^{22}$
$BR \left(\tau \to \mu \gamma \right)$	$< 4.4 \times 10^{-8}$ [139]	$eta_L^{33} imes eta_L^{32}$
$BR\left(\tau \to \mu\phi\right)$	$< 8.4 imes 10^{-8}$	$\beta_L^{23}\times\beta_L^{22}$
$BR\left(D_s\to\mu\nu\right)$	$< 5.49 \times 10^{-3}$	$\beta_L^{22}\times\beta_L^{22}$
$\mathrm{BR}\left(D_s \to \tau \nu\right)$	$< 5.48 \times 10^{-2}$	$eta_L^{23} imes eta_L^{23}$
$BR \left(B \to K \tau \mu \right)$	$< 2.8 imes 10^{-5}$	$\beta_L^{32} \times \beta_L^{23} \beta_L^{33} \times \beta_L^{22}$
$BR \left(B_s \to \tau \mu \right)$	$< 4.2 imes 10^{-5}$	$\beta_L^{32} \times \beta_L^{23} \beta_L^{33} \times \beta_L^{22}$
$\mathrm{BR}\left(B_s \to \tau\tau\right)$	$< 2.1 imes 10^{-3}$	$\beta_L^{33} imes \beta_L^{23}$

$U_1 = (3,1)_{2/3}$

2103.16558

Leptoquarks Flavor observables

Observable	Experimental Bounds	Relevant Couplings
$R_{K^{(*)}}$	$R_{K} = 0.846^{+0.044}_{-0.041}$ $R_{K^*} = 0.685^{+0.113}_{-0.069} \pm 0.047$ [131, 132]	$\beta_L^{32}\times\beta_L^{22}$
$\mathrm{BR}\left(B_s \to \mu \mu\right)$	$3.09^{+0.48}_{-0.44} imes 10^{-9}$ [133–136]	$eta_L^{32} imes eta_L^{22}$
$R_{D^{(*)}}$	$R_D = 0.340 \pm 0.030$ $R_{D^*} = 0.295 \pm 0.014$ [137]	$\beta_L^{33}\times\beta_L^{23}$
$R_D^{\mu/e}$	$0.995 \pm 0.022 \pm 0.039$ [138]	$\beta_L^{32}\times\beta_L^{22}$
$\mathrm{BR}\left(\tau \to \mu\gamma\right)$	$< 4.4 \times 10^{-8}$ [139]	$eta_L^{33} imes eta_L^{32}$
$\mathrm{BR}\left(\tau \to \mu \phi\right)$	$< 8.4 \times 10^{-8}$	$\beta_L^{23}\times\beta_L^{22}$
$\mathrm{BR}\left(D_s\to\mu\nu\right)$	$< 5.49 \times 10^{-3}$	$\beta_L^{22}\times\beta_L^{22}$
$\mathrm{BR}\left(D_s \to \tau \nu\right)$	$< 5.48 \times 10^{-2}$	$eta_L^{23} imes eta_L^{23}$
$BR \left(B \to K \tau \mu \right)$	$< 2.8 imes 10^{-5}$	$\beta_L^{32} \times \beta_L^{23} \beta_L^{33} \times \beta_L^{22}$
$\mathrm{BR}\left(B_s \to \tau \mu\right)$	$< 4.2 imes 10^{-5}$	$\beta_L^{32}\times\beta_L^{23} \beta_L^{33}\times\beta_L^{22}$
$\mathrm{BR}\left(B_s \to \tau\tau\right)$	$< 2.1 imes 10^{-3}$	$eta_L^{33} imes eta_L^{23}$

2103.16558

Leptoquarks **Drell-Yan[†] Production**

t-channel

s-channel

Simulated with MG5

Leptoquarks **Pair Production**

Leptoquarks

Leptoquarks **Pair Production**

Simulated with MG5

Leptoquarks **Pair Production**

Simulated with MG5

Muon Beam Dump (µBD) **Existing BD literature**

At existing experiments

New Fixed-Target Experiments to Search for Dark Gauge Forces

James D. Bjorken,¹ Rouven Essig,¹ Philip Schuster,¹ and Natalia Toro²

With μ

Muon Beam Experiments to Probe the Dark Sector

Chien-Yi Chen,^{1,2,*} Maxim Pospelov,^{1,2,†} and Yi-Ming Zhong^{3,‡}

- 160 GeV, 3 GeV
- Light scalars

At future experiments

Beam Dump Experiment at Future Electron-Positron Colliders

Shinya Kanemura^(a), Takeo Moroi^(b), Tomohiko Tanabe^(c)

Leptophilic Gauge Bosons at ILC Beam Dump Experiment

Kento Asai^(a,b), Takeo Moroi^(a) and Atsuya Niki^(a)

