Top Mass Measurements at e^+e^- Colliders

Frank Simon
Max-Planck-Institute for Physics
Outline

• Different experimental routes
• A detailed look at the threshold
• Snowmass ’21 Systematics summary
• A further look at key uncertainties
Top Quark Mass: Measurement Strategies

At and above threshold

- The accelerator side: Requires sufficient collision energy for top pair production
- So far thoroughly studied for ILC, CLIC, threshold studies common for CLIC, FCC-ee, ILC

Three approaches to the top mass

- The threshold scan around 350 GeV
- The top mass from radiative events
- Direct kinematic reconstruction

threshold - QQbar_Threshold NNNLO
ISR + ILC Luminosity Spectrum
- default - m_t = 171.5 GeV, τ = 1.37 GeV
- variations +0.1 GeV
- variations -0.15 GeV

efficiencies and signal yields from EPJC73, 2530 (2013)
Top Quark Mass: Measurement Strategies

At and above threshold

- The accelerator side: Requires sufficient collision energy for top pair production
- So far thoroughly studied for ILC, CLIC, threshold studies common for CLIC, FCC-ee, ILC

Three approaches to the top mass

The threshold scan around 350 GeV

The top mass from radiative events

Direct kinematic reconstruction

Key references:
- EPJ C73, 2530 (2013) (CLIC, (ILC): Threshold, direct)
- JHEP 11, 003 (2019) (CLIC: Threshold, radiative, direct)
- PLB 804,135353 (2020) (ILC, CLIC: radiative)

+ a rich set of reports and conference proceedings on arXiv
Direct Kinematic Reconstruction above Threshold

Interpretation challenges

• 80 MeV statistical precision for 100 fb$^{-1}$ at 500 GeV (extracted via template fits) in invariant mass of W_b final state.
 Newer study: 30 MeV at 380 GeV, 1 ab$^{-1}$ at CLIC
• Experimental systematics, in particular b-JES a clear challenge
• On the theory side: interpretation of the measured mass, other corrections

[EPJ C73, 2530 (2013)]

[JHEP 11, 03 (2019)]
Top Mass in Radiative Events

A threshold scan at higher collision energies

- A new(er) idea to measure the top mass in a theoretically well-defined scheme in high-energy running above the threshold
Top Mass in Radiative Events

A threshold scan at higher collision energies

- A new(er) idea to measure the top mass in a theoretically well-defined scheme in high-energy running above the threshold

<table>
<thead>
<tr>
<th>cms energy</th>
<th>CLIC, $\sqrt{s} = 380$ GeV</th>
<th>ILC, $\sqrt{s} = 500$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>luminosity [fb$^{-1}$]</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>statistical</td>
<td>140 MeV</td>
<td>90 MeV</td>
</tr>
<tr>
<td>theory</td>
<td>46 MeV</td>
<td>55 MeV</td>
</tr>
<tr>
<td>lum. spectrum</td>
<td>20 MeV</td>
<td>20 MeV</td>
</tr>
<tr>
<td>photon response</td>
<td>16 MeV</td>
<td>85 MeV</td>
</tr>
<tr>
<td>total</td>
<td>150 MeV</td>
<td>110 MeV</td>
</tr>
</tbody>
</table>

matched NNLO + NNLL calculation, luminosity spectrum folded in explicitly; Extraction of short distance MSR mass
A threshold scan at higher collision energies

- A new(er) idea to measure the top mass in a theoretically well-defined scheme in high-energy running above the threshold

<table>
<thead>
<tr>
<th>cms energy</th>
<th>CLIC, $\sqrt{s} = 380$ GeV</th>
<th>ILC, $\sqrt{s} = 500$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>luminosity [fb$^{-1}$]</td>
<td>500 1000 500 4000</td>
<td></td>
</tr>
<tr>
<td>statistical</td>
<td>140 MeV 90 MeV 350 MeV 110 MeV</td>
<td></td>
</tr>
<tr>
<td>theory</td>
<td>46 MeV 55 MeV</td>
<td></td>
</tr>
<tr>
<td>lum. spectrum</td>
<td>20 MeV 20 MeV</td>
<td></td>
</tr>
<tr>
<td>photon response</td>
<td>16 MeV 85 MeV</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>150 MeV 110 MeV 360 MeV 150 MeV</td>
<td></td>
</tr>
</tbody>
</table>

matched NNLO + NNLL calculation, luminosity spectrum folded in explicitly; Extraction of short distance MSR mass

can provide 5σ evidence for scale evolution (“running”) of the top quark MSR mass from ILC500 data alone
The Top Quark Mass

Ultimate precision at the threshold

- Exploit precise theoretical calculations of cross section in the threshold region, in well-defined mass schemes (m_t^{PS}, m_t^{1S}...) -> Can be converted directly into MSbar mass.
The Top Quark Mass

Ultimate precision at the threshold

• Exploit precise theoretical calculations of cross section in the threshold region, in well-defined mass schemes (m_t^{PS}, m_t^{1S}...) -> Can be converted directly into MSbar mass.

The threshold is sensitive to top quark properties
The Top Quark Mass

Ultimate precision at the threshold

- Exploit precise theoretical calculations of cross section in the threshold region, in well-defined mass schemes (m_t^{PS}, m_t^{1S}...) -> Can be converted directly into MSbar mass.

The threshold is sensitive to top quark properties
The Top Quark Mass

Ultimate precision at the threshold

- Exploit precise theoretical calculations of cross section in the threshold region, in well-defined mass schemes (m_{t}^{PS}, m_{t}^{1S}...) -> Can be converted directly into MSbar mass.

The threshold is sensitive to top quark properties.
The Top Quark Mass

Ultimate precision at the threshold

- Exploit precise theoretical calculations of cross section in the threshold region, in well-defined mass schemes (m_{tPS}, $m_{t1S}...$) -> Can be converted directly into MSbar mass.

The threshold is sensitive to top quark properties
Differences between Colliders

The Luminosity Spectrum

- Linear collider luminosity spectra are characterized by a beamstrahlung tail, FCC-ee is close to Gaussian
Differences between Colliders

The Luminosity Spectrum

- Linear collider luminosity spectra are characterized by a beamstrahlung tail, FCC-ee is close to Gaussian

![Graph showing differences between FCC and ILC luminosity spectra.](image)

- The Luminosity Spectrum

- Linear collider luminosity spectra are characterized by a beamstrahlung tail, FCC-ee is close to Gaussian
Differences between Colliders

The Luminosity Spectrum

- Linear collider luminosity spectra are characterized by a beamstrahlung tail, FCC-ee is close to Gaussian

The Luminosity Spectrum

\[
\begin{align*}
\text{tt threshold} - m_T^{171.5 \text{ GeV}} \\
\text{QQbar Threshold NNNLO} & \quad \text{FCC-ee 350 LS only} \\
\text{ISR only} & \quad \text{FCC-ee 350 LS+ISR}
\end{align*}
\]

\[
\begin{align*}
\text{ILC} & \quad 350 \text{ LS only} \\
\text{ILC 350 LS+ISR}
\end{align*}
\]

\[
\begin{align*}
\text{91 km ring circumference} \\
\text{based on CLIC/ILC Top Study EPJ C73, 2530 (2013)}
\end{align*}
\]

Requires: Precise understanding and measurement of spectrum.
In this case:
~ 30% reduction of cross section -> 15% hit on statistical uncertainty
The Standard Threshold Scan

Experimental Assumptions

- The standard assumptions:
 Efficiency, signal and background yields taken from EPJ C73, 2530 (2013):
 70.2% signal efficiency, 73 fb effective background cross section after selection

- A 10-point threshold scan, with equal luminosity sharing, spacing by 1 GeV, from 340 - 349 GeV

- ILC, FCC-ee assume 200 fb$^{-1}$ total, CLIC 100 fb$^{-1}$
 (for easier comparisons, 200 fb$^{-1}$ numbers are often also quoted for CLIC)

- Top mass (and other parameters, such as Γ_t, y_t, α_s) extracted via template fits of predicted cross sections with different input parameters.
 Theory essential - here NNNLO QCD [Beneke et.al.]
Theory Uncertainties

A key factor

- QCD scale uncertainties highly relevant.
Theory Uncertainties

A key factor

- QCD scale uncertainties highly relevant.
- Also need to calculate other effects, such as ISR, to the required precision!

The step from black to green

[only approximate in current experimental studies]
Choosing the Scan Range

Parameter Sensitivity

- Plot shows the derivative of the cross section for various parameters - to make this understandable this is normalised to typical changes of these parameters.
- Full use to optimize scan range requires knowledge of mass to ~ 200 MeV in PS scheme. Can be achieved with 2 x 5 fb\(^{-1}\):
 - point 1: \(\sqrt{s} = 2 \times m_{t,\text{PS},LHC} - 1.5\) GeV
 - point 2: \(\sqrt{s} = 2 \times m_{t,\text{PS},LHC} + 0.5\) GeV [arXiv:1902.07246]
 (N.B.: This is safe also when taking theory uncertainties into account)
- Optimizing for particular parameters can reduce the statistical uncertainty by ~ 25% [JHEP 7, 70 (2021)]
Choosing the Scan Range

Enter theory uncertainty

- QCD scale uncertainties dominate over point-by-point statistical uncertainties for typical threshold scans: At this point optimising scan strategies to reduce statistical uncertainties does not improve the total uncertainty - in fact concentrating on a very small range may make systematic control more difficult.

- In general: Also to separate contributions from different parameters, the most relevant range is 340 - 346 GeV. Higher energy points would primarily benefit a y_t measurement.
Choosing the Scan Range

Bottom line for FCC-ee studies

- Mildly optimized scan (mass & width) for FCC-ee as a balance between different sensitivities:
 - 8 points in the range of 340 - 346 GeV

assumed for most results in the following
Fitting Multiple Parameters

Mass, Width, Yukawa Coupling

- ~ 45 MeV on width

- ~ 11.5% on Yukawa coupling
Uncertainties Overview

ILC as starting point

- Relatively thorough evaluation for ILC leading up to European Strategy, and adjusted also for CLIC in the framework of the CLIC top physics paper.

<table>
<thead>
<tr>
<th>error source</th>
<th>Δm_t^{PS} [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>stat. error (200 fb$^{-1}$)</td>
<td>13</td>
</tr>
<tr>
<td>theory (NNNLO scale variations, PS scheme)</td>
<td>40</td>
</tr>
<tr>
<td>parametric (α_s, current WA: 9 x 10$^{-4}$)</td>
<td>26</td>
</tr>
<tr>
<td>non-resonant contributions (such as single top)</td>
<td>< 40</td>
</tr>
<tr>
<td>residual background / selection efficiency</td>
<td>10 – 20</td>
</tr>
<tr>
<td>luminosity spectrum uncertainty</td>
<td>< 10</td>
</tr>
<tr>
<td>beam energy uncertainty</td>
<td>< 17</td>
</tr>
<tr>
<td>combined theory & parametric</td>
<td>30 – 50</td>
</tr>
<tr>
<td>combined experimental & backgrounds</td>
<td>25 – 50</td>
</tr>
<tr>
<td>total (stat. + syst.)</td>
<td>40 – 75</td>
</tr>
</tbody>
</table>

assuming standard 10 point scan
40 - 45, depending on scan range
evaluated with current WA

2015 study, reduce with theory work
2012 study, basis for all newer threshold studies
evaluated for CLIC
very conservative estimate - expect to be better
Uncertainties Overview

My Snowmass’21 Bottom Line

<table>
<thead>
<tr>
<th>δm_t^{PS} [MeV]</th>
<th>ILC</th>
<th>CLIC</th>
<th>FCC-ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{L} [fb$^{-1}$]</td>
<td>200</td>
<td>100 [200]</td>
<td>200</td>
</tr>
</tbody>
</table>

Theoretical uncertainty (QCD): 40 – 45 |
Parametric uncertainty α_s: 26 | 26 | 3.2 |
Parametric uncertainty y_t (HL-LHC): 5 |
Non-resonant contributions: < 40 |
Experimental systematic uncertainty: 15 – 30 | 11 – 20 |
Total uncertainty: 40 – 75 |

- Assumptions on experimental systematics:
 - residual background and selection similar for all
 - very slight advantage for FCC-ee due to absence of luminosity spectrum uncertainty
 - Beam energy uncertainty for FCC-ee 3 MeV (for 5 MeV energy uncertainty) - original conservative estimate for ILC and CLIC can likely be improved to similar range (same energy measurement techniques for linear and circular)

slightly compressed scans for ILC, FCC-ee

latest evaluation with 8-point scans

ultimate α_s (1.2×10^{-4}) assumed for FCC-ee, current WA for ILC, CLIC
(Do we have something better?)
Uncertainties: Luminosity Spectrum

A few more details

• Beamstrahlung tail at linear colliders smears the threshold curve: Requires accurate modeling in analysis

• Studied with the CLIC spectrum, with full detector simulations for spectrum reconstruction. Effect on top mass controlled to better than 10 MeV
Uncertainties - Parametric

A few more details

Correlation of mass with α_s, y_t

Uncertainty scales with input precision:

- $\Delta m \sim 2.6 \text{ MeV per } 10^{-4} \text{ in } \alpha_s$
- $\Delta m \sim 1.6 \text{ MeV per } 1\% \text{ in } y_t: \sim 5 \text{ MeV for } 3.4\%$
- from HL-LHC
Uncertainties - Non-resonant contributions

A few more details

- Studied in EPJ C75, 223 (2015) (Fuster et al)

- Non-resonant contributions in the threshold region are non-negligible.
- Contribution to yield depends strongly on cuts.
- Cuts can influence shape

- Precise understanding and control important: need to limit the effect to well below 1% of cross section to make uncertainty smaller than statistics!
Uncertainties - Scale

A few more details

- Impact of QCD scale uncertainties on mass, width, Yukawa extraction

![Graph showing the impact of QCD scale uncertainties on mass, width, and Yukawa extraction.](image-url)
Uncertainties - Scale

A few more details

- Impact of QCD scale uncertainties on mass, width, Yukawa extraction

February 2022

FCC-ee top threshold scan 340 - 349 GeV, flexible
PS scheme, input $m_{tPS} = 171.5$ GeV
standard template fit

efficiencies and signal yields taken from EPJ C73, 2530 (2013)

February 2022

FCC-ee flexible top threshold scan , 200.0 fb$^{-1}$
PS scheme, input $m_{tPS} = 171.5$ GeV, $\Gamma_t = 1.37$ GeV

- Δm (2D template fit)
- $\Delta \Gamma$ (2D template fit)
- $\Delta \Gamma$ (1D template fit, fixed m_t)

efficiencies and signal yields taken from EPJ C73, 2530 (2013)
Uncertainties - Scale

A few more details

- Impact of QCD scale uncertainties on mass, width, Yukawa extraction
Uncertainties - Scale

A few more details

- Impact of QCD scale uncertainties on mass, width, Yukawa extraction

The leading systematic:
Improvements directly propagate to total precision
Bottom Line

• e^+e^- Colliders running at the top quark pair production threshold will provide the ultimate precision on the top quark mass

• A challenge for theory: Understanding parameters on a level comparable to expected experimental precision. Theory is a / the leading systematic for many measurements - for the mass it is the leading uncertainty overall.

⇒ Advances in theory directly translate into improvements of overall precision.