An overview of spin correlations and FCNC at the HL-LHC

Amandeep Singh Bakshi Purdue University

Seattle Snowmass Summer Meeting 7/20/2022

This talk

FCNC in the top-quark sector

tt spin correlations

- The top quark is an ideal candidate for spin measurements!
 - Decays before forming any bound states.
 - Spin information is relayed onto daughter particles.
- In the SM, $t\bar{t}$ production is (approximately) unpolarized.
 - But, the spins are highly correlated.
- Top spin measurements are a great probe to BSM physics
 - Suppression -> s-channel dark matter
 - Enhancement -> new scalars ?

lifetime
$$<$$
 QCD $_{\rm timescale}$ $<$ spin-flip $_{\rm timescale}$ $<$ $10^{-25}\,\rm s$ $<$ $10^{-24}\,\rm s$ $<$ $10^{-21}\,\rm s$

Indirect measurements

- Direct measurement of spin correlations require full reconstruction of the top and anti-top.
- Spin correlations can however be indirectly probed using leptons
 - A charged lepton is a perfect spin analyzer, very well reconstructed at the LHC -> study the dilepton channel.
- ullet For instance the angle between leptons in the transverse plane (lab frame) $\Delta\phi$
 - Most of the shape of the distribution comes from tops
 kinematics

Indirect measurements

Correct $\Delta \phi$ distribution with acceptance and efficiency (unfold).

With 2016 datasets, both ATLAS and CMS saw discrepancies between data and NLO MC.

Direct measurements

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_1^i d\cos\theta_2^j} = \frac{1}{4} \left(1 + B_1^i \cos\theta_1^i + B_2^j \cos\theta_2^j - C_{ij} \cos\theta_1^i \cos\theta_2^j \right)$$

- Dilepton distribution probes top spin in 3-dimensions:
 - Leptons follow parent top spin, average polarization given by $B_{1/2}^{i}$.
 - Relative lepton directions follow 3x3 spin correlation matrix C.
- Combined, these 15 coefficients completely characterize the spin dependance of $t\bar{t}$ production.

Phys. Rev. D 100, 072002

Direct measurements

- Opening angle between the leptons $cos \varphi = \ell^+ \cdot \ell^-$ (in the parent top rest frame) has maximal sensitivity to the degree of alignment of top quark spins.
- By far the single most precise variable from Run2 measurements
 - Uncertainty ~ 5%.
- One can extract the fraction of SM-like spin correlation events (f_{SM}) using such precise variables.

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\varphi} = \frac{1}{2} \left(1 - \frac{D}{\cos\varphi} \right)$$

Projected values for f_{SM}

- Extraction of f_{SM} requires a $t\bar{t}$ sample with spin correlations turned off.
- Then for a given observable (say D):

$$f_{SM} = \frac{D_{measured} - D_{theory,uncorrelated}}{D_{theory,correlated} - D_{theory,uncorrelated}}$$

- Jet energy scales and resolution uncertainties dominate.
- Ongoing study for spin corr projection at FCC-hh

SUSY interpretation

- Spin correlations are sensitive to new physics models that involve a top quark partner.
- For our projection we considered top squark partners in the top corridor upto a mass of 900 GeV.
- With 18 spin correlation variables as input, we use a parametric DNN to construct a discriminant sensitive to new physics.

DNN outputs along the top corridor

Higher stop masses are easier to separate using a DNN.

However, the cross-section drops exponentially, and the limits get tight

CMS PAS FTR-18-034

Parametric DNN output at different points along the top corridor

Limits

CMS PAS FTR-18-034

CMS Phase-2 Simulation Preliminary (14 TeV) $m(\tilde{X}_1^0)$ [GeV] $pp \rightarrow \tilde{t}_1 \bar{\tilde{t}}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ 2.00 700 section [pb] 1.75 m(1)-m(x)=145 GeV 1.50 500 95% upper limit on cross 1.25 400 1.00 300 0.75 200 0.50 100 0.25 0.00 900 300 700 800 200 400 500 600 100 $m(\tilde{t}_1)$ [GeV]

CMS PAS FTR-18-034

Order of magnitude improvement over existing limits.

Gains by adding spin corr variables.

Flavor Changing Neutral Currents

- Flavor changing neutral currents are forbidden at LO in the SM.
- At tree level supressed by :
 - The GIM mechanism and small CKM matrix elements.
- Predicted branching fractions very small $O(10^{-15} \sim 10^{-17})$
 - Significantly enhanced however in BSM extensions | MSSM ${\cal O}(10^{-7})$ Extra dimensions ${\cal O}(10^{-5})$

Graphics from https://moriond.in2p3.fr/2019/EW/slides/

- Many accessible signatures depending upon the Higgs decay channel.
- Dedicated analyses for each channel, final combination by ATLAS.

- The Diboson final state provides for a very clean signature :
 - 2 same-sign leptons / 3 leptons
- ullet Main backgrounds are the ttW and non-prompt leptons.
- Dominant systematics : modeling uncertainties, statistics for data-driven estimates

$$\mathcal{B}(t \to Hu) < 1.9(1.5) \times 10^{-3}$$

$$\mathcal{B}(t \to Hc) < 1.6(1.5) \times 10^{-3}$$

Phys. Rev. D 98, 032002 (2018)

- Select events with:
 - Leptons and/or hadronic taus
- Main backgrounds from fake taus
- Dominant systematics : fake tau modeling uncertainties

$t \to H(\tau \tau)q$

$$\mathcal{B}(t \to Hu) < 1.7 (2.0) \times 10^{-3}$$

$$\mathcal{B}(t \to Hc) < 1.9 (2.1) \times 10^{-3}$$

JHEP 05 (2019) 123

- Final state looks like:
 - I-lepton and several b-jets
- Main backgrounds from $t\bar{t}$ and heavy flavor jets.
- Dominant systematics : c-jet mistagging

$t \rightarrow H(b\bar{b})q$

$$\mathcal{B}(t \to Hu) < 5.2 (4.9) \times 10^{-3}$$

$$\mathcal{B}(t \to Hc) < 4.2 (4.0) \times 10^{-3}$$

JHEP 05 (2019) 123

$$\mathcal{B}(t \to Hu) < 1.2 \ (0.83) \times 10^{-3}$$

$$\mathcal{B}(t \to Hc) < 1.1 \ (0.83) \times 10^{-3}$$

JHEP 05 (2019) 123

$$\mathcal{B}(t \to Zu) < 1.7 (2.4) \times 10^{-4}$$

$$\mathcal{B}(t \to Zc) < 2.4 (3.2) \times 10^{-4}$$

- The tZq vertex also has a clear experiment signature :
 - 3 leptons (2 with m_{ll} close to Z peak)
- Dominant backgrounds : ttZ
- Dominant systematics : background modeling

$$\mathcal{B}(t \to Zu) < 2.4 \ (1.5) \times 10^{-4}$$

$$\mathcal{B}(t \to Zc) < 4.5 (3.7) \times 10^{-4}$$

CMS-PAS-TOP-17-017

Amandeep Singh Bakshi

Probing the tyq and tgq vertices

Phys. Lett. B 800 (2019) 135082

$$\mathcal{B}(t \to q\gamma)[10^{-5}]$$
 $tu\gamma$ LH 2.8 $4.0^{+1.6}_{-1.1}$ $\mathcal{B}(t \to q\gamma)[10^{-5}]$ $tu\gamma$ RH 6.1 $5.9^{+2.4}_{-1.6}$ $\mathcal{B}(t \to q\gamma)[10^{-5}]$ $tc\gamma$ LH 22 27^{+11}_{-7} $\mathcal{B}(t \to q\gamma)[10^{-5}]$ $tc\gamma$ RH 18 28^{+12}_{-8}

$$\mathcal{B}(t \to gu) < 2.0 (2.8) \times 10^{-5}$$

 $\mathcal{B}(t \to gc) < 4.1 (2.8) \times 10^{-4}$

JHEP 02 (2017) 028

Status of Run2 measurements

HL-LHC projections

CERN-LPCC-2018-03

- The magenta line shows the projected bounds on FCNC branching ratios at the HL-LHC.
- Caveat :
 - "We typically tend to do better than projections, and so we could hope to challenge more of the potential SM extensions": Jung @ TOP2019.

FCNC at alternative detectors

Summary

- Bright prospects for top quark physics at the HL-LHC and beyond.
 - Ongoing study for spin correlation projection at FCC-hh.
- Projections of stop quark cross-sections and FCNC branching ratios show an order of magnitude reduction in the limits.
- Abundance of statistics and reduction in systematics open the door to study many BSM scenarios, plenty of room for discovery/ exclusions.
- Thank you!

BACKUP

Outline of the talk

- $t\bar{t}$ spin correlations
 - Indirect and direct measurement of spin correlations
 - ullet Projections of f_{SM} at $\sqrt{s} = 14\,\mathrm{TeV}$ and $3ab^{-1}$
 - SUSY interpretation
- FCNC in the top-quark sector
 - Probing different vertices
 - FCNC projections for the HL-LHC, alternative detectors

BSM physics with tops

Figure 1-22. Expected relative precision on the Zt_Lt_L and Zt_Rt_R couplings at the LHC (lighter green), the HL-LHC (darker green), the ILC (blue) and the FCC-ee (orange, red). The black dots indicate the deviations expected for different parameter choices of 4D composite Higgs models, with f < 2 TeV (purple dots: examples for typical deviations in various BSM models). From [478].

BSM physics with tops

1.6.2 Azimuthal angular correlation as a new boosted top jet substructure

Summary of white paper contribution [480]

When a top quark is highly boosted, the W boson from its decay has a substantial linear polarization that results in a $\cos 2\phi$ azimuthal angular correlation among the top decay products [480]. The angle ϕ is shown in the sketch in Figure [1-24]. This correlation can be measured for hadronically decayed boosted top quarks and its magnitude provides a way to measure the longitudinal polarization of a boosted top quark, which is an important probe of new physics that couples to the top-quark sector.

Figure 1-24. Sketch of the top quark decay products defining the azimuthal angle ϕ . Taken from Ref [480].

FCNC at alternative detectors

Detector	$\mathcal{B}(t \to u\gamma)$	$\mathcal{B}(t o c \gamma)$
CMS $(19.8 \text{ fb}^{-1}, 8 \text{ TeV})$	13×10^{-5}	170×10^{-5}
CMS Phase-2 (300 fb $^{-1}$, 14 TeV)	2.1×10^{-5}	15×10^{-5}
CMS Phase-2 (3 ab^{-1} , 14 TeV)	0.9×10^{-5}	7.4×10^{-5}
$FCC-hh (3 ab^{-1}, 100 TeV)$	9.8×10^{-7}	12.9×10^{-7}
$FCC-hh (30 ab^{-1}, 100 TeV)$	1.8×10^{-7}	2.4×10^{-7}
Detector	$\mathcal{B}(t \to uH)$	$\mathcal{B}(t \to cH)$
CMS $(36.1 \text{ fb}^{-1}, 13 \text{ TeV})$	4.7×10^{-3}	4.7×10^{-3}
$ATLAS (36.1 \text{ fb}^{-1}, 13 \text{ TeV})$	1.9×10^{-3}	1.6×10^{-3}
FCC-hh (3 ab ⁻¹ , 100 TeV)	8.4×10^{-5}	7.7×10^{-5}
$FCC-hh (30 ab^{-1}, 100 TeV)$	4.8×10^{-5}	4.3×10^{-5}

Event selection

- 2 oppositely charged isolated leptons ($e\mu$) [Semi leptonic tau decays also included] :
 - \bullet $p_T > 25(20)$ GeV , for leading (trailing) lepton and $|\eta| < 2.4$
 - Charge Hadron Subtracted electron and muon objects
- >= 2 anti-kT jets (R = 0.4) such that :
 - $p_T > 30$ GeV and $|\eta| < 2.4$
 - Jet cleaning : $\Delta R(lepton, jet) > 0.4$
 - >= | b-tag
 - PUPPI for Pileup mitigation
- $E_T^{miss} > 40$ GeV

Top quark reconstruction

- In order to add the spin correlation variables the top quark needs to be reconstructed.
- Decays in the dilepton channel are reconstructed using on shell tops and Ws, which gives a set of quadratic equations.
- We use the geometric solver as described in Betchart et al.: <u>arXiv:1305.1878</u>.
- Also used in TOP-19-008.

arXiv:1305.1878

Indirect measurements

Correct $\Delta \phi$ distribution with acceptance and efficiency (unfold).

With 2016 datasets, both ATLAS and CMS saw discrepancies between data and NLO MC.

Phys. Rev. D 100, 072002

Eur. Phys. J. C 80 (2020) 754

Top quark reconstruction

- Using conservation of 4-momentum (with the mass of the top and W boson assumed)
- The measured b and I momenta together help constrain the neutrino momentum to an ellipse.
- For the double neutrino case, an additional MET constraint is imposed.

Other spin correlation observables

Control plots for other observables used in this analysis

Uncertainties

Uncertainty	Туре	Recommendation	
Jet Energy Scale	Shape based	HL_YR_JEC.root	
Jet Energy Regression	Shape based	3-5 % as a function of eta	
PDF	Shape based	Ultimate PDF	
Renormalization	Shape based	1/2 of Run 2	
Pile Up	Flat	2%	
B-Tagging	Flat	1%	
Lumi	Flat	1%	
Lepton ID	Flat	1% per electron or 0.5% per muon	
Xsection	Flat	https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TtbarNNLO	

Implementing JES and JER

- For JES we use the HL_YR_JEC.root file to look up the percentage errors by pt.
- Different recommendations for b-jets and light-jets.
- JER is modeled as function of η , we see an increase in cumulative uncertainties at $\eta \leq 1$.
- We assume a 3% uncertainty till $\eta \leq 1$, and 5 % for $\eta > 1$ as suggested in the YR systematics document.

https://twiki.cern.ch/twiki/bin/viewauth/CMS/YR2018Systematics

Implementing PDF, scale

- Uncertainties arising due to PDF are assessed by reweighing the samples according to the 100 replicas in the NNPDF3.0 PDF sets.
- Uncertainties arising to renormalization (μ_R) and factorization (μ_F) scales are computed by varying μ_R and μ_F between 0.5 and 2 for a total of 10 variations.
- Final scale uncertainty is reduced by a factor
 1/2 as suggested in the YR systematics.

-			
PDF uncertainties HLLHC / Current	10 GeV < M _X < 40 GeV	40 GeV < M _X < 1 TeV	1 TeV < M _X < 6 TeV
g-g luminosity	0.58 (0.49)	0.41 (0.29)	0.38 (0.24)
q-g luminosity	0.71 (0.65)	0.49 (0.42)	0.39 (0.29)
quark-quark luminosity	0.78 (0.73)	0.46 (0.37)	0.60 (0.45)
quark-antiquark luminosity	0.73 (0.70)	0.40 (0.30)	0.61 (0.50)
up-strange luminosity	0.73 (0.67)	0.38 (0.27)	0.42 (0.38)

Table of reduction factors
https://twiki.cern.ch/twiki/bin/viewauth/CMS/
YR2018Systematics

Top quark reconstruction: Smearing

- The output of the ellipse solver serves as a good starting point for solution smearing.
- Each solution is smeared 100 times using the jet and lepton energy resolutions.
- The generator level m_lb distribution is then used to assign weights to determine the quality of the solutions.

m_lb distribution for correctly paired lepton and b-quark at generator level

Top quark reconstruction: Smearing

• For each event there are : IOO × N_jets × 2/4 solutions

Choose neutrinos that yield the lowest mttbar

To decide the 2 b-jet candidates we use the number of b-tags and average sum of m_lb weights

From the smearing,
To resolve this, we do a
weighted average over solutions

SUSY top quark partners

- For the purposes of our dataset the stealth phase space includes 30 mass points such that:
- $\begin{array}{l} \bullet \ \, M_{stop} \leq 242.5 \ {\rm GeV, \ and} \\ M_{stop} M_{\chi_1^0} = M_{top} \\ ({\rm here} \ M_{top} \ {\rm can \ be \ 167.5, 175 \ or \ 182.5 \ GeV}) \end{array}$
- The acceptance and efficiency change significantly in this region, making exclusion by direct searches harder in this region.

SUSY top quark partners

- Hence the need for indirect searches.
- Exclusions can be accomplished via precision measurements of top quark properties, spin correlations in this case.
- Currently results in this region using spin correlations are from ATLAS.
- CMS also has results in the dileptonic channel, but using a direct search.

CERN-EP-2019-034. ATLAS

JHEP03 (2019)10 CMS

SUSY top quark partners

