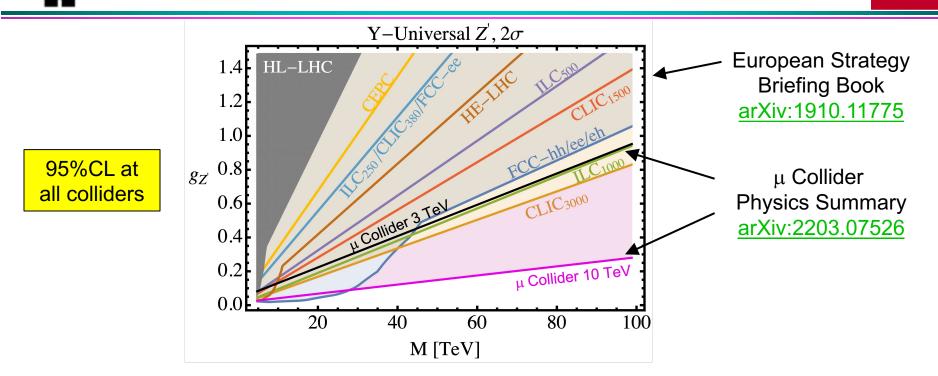


1

EF09 New Bosons and Heavy Resonances

Robert M. Harris *Fermilab*


Felix Yu Johannes-Gutenberg University of Mainz

Snowmass Community Summer Study Workshop July 20, 2022

- Our report evaluates prospects for new bosons and heavy resonances
 - Synthesizing results from a dozen snowmass whitepapers on BSM physics
- We utilize **Z' bosons** as a standard candle to rank colliders by mass reach
 - A widely used benchmark of a new boson, ubiquitous within BSM physics
 - Searched for by all colliders at arbitrary mass and coupling
- We also discuss other models and channels evaluated at Snowmass
 - ➡ W' bosons: charged cousins to the Z', produced in s-channel at pp colliders
 - Axion-like particles: pseudo-scalars produced at all colliders
 - Dijet resonances: model-independent channel produced at pp colliders
- We make observations about the relative sensitivity of the colliders
 - Conclusions about the best experimental path towards new discovery

- Z' with universal coupling $g_{Z'}$ to all SM fermions, ideal for collider comparisons.
 - Lepton colliders have an edge at large masses where only indirect effects can be measured
 - Hadron colliders provide best sensitivity at lower masses via direct observation of bumps.
- Muon collider results, new for Snowmass 2021, show impressive sensitivity
 - 3 TeV μ collider competitive with indirect searches using contact interactions at FCC-hh
 - 10 TeV μ collider most sensitive for M_Z' > 28 TeV, uniquely probes M_Z' > 100 TeV.

- Z' with SM couplings to fermions is model most often used by searches
 - Sensitivity widely available: HL-LHC, ILC, and all pp colliders, but not μ collider.

SSM 2	Z' at	HL-LHC	; (14 TeV	′, 3ab ⁻¹)	Z'	ILC 2		ILC		ILC	1000	
Source	Source Channel		5σ (Ta)()	95%		Model	excl.	disc.	excl.	disc.	excl.	disc.	
			(TeV)	(TeV)	V)	SSM	7.7	4.9	13	8.3	22	14	
R.H.	R.H. $Z' \rightarrow dijet$		4.2	5.2	2	Whitepapers:							
Z' –		$\rightarrow \mu^+ \mu^-$	5.7	5.8	3	<u>CMS-PAS-FTR-21-005</u>							
ATLAS	$Z' \rightarrow e^+ e^-$		6.3	6.4	4	ATL-PHYS-PUB-2018-044 arXiv:1902.11217							
	$Z' \rightarrow l^+ l^-$		6.4	6.5	5	arXiv:2203.07272							
CMS	Ζ'	$Z' \rightarrow l^+ l^-$ 6		6.8	3	arXiv:2202.03389							
Dijets a	Dijets at		HC	HC FNAL-S		F FCC-hh		V	VLHC		Coll. in the Sea		
рр		√s = 1 ∫Ldt =	· · · · · ·	√s = 27 TeV, ∫Ldt = 3 ab⁻¹					√s = 300 TeV, ∫Ldt = 100 ab⁻¹		√s = 500 TeV, ∫Ldt = 100 ab⁻¹		
Colliders		5 σ 9	5% CL	5 σ	95% C	L 5σ	95% CL	5 σ	95% CL	. 5 σ	95%	CL	
Z' (SSM)		4.2	5.2	7.0	8.9	25	32	67	87	96	1	30	

Lepton colliders are indirectly	ILC250/	
sensitive to Z' mass >> \sqrt{s} via	CLIC380/ FCC-ee	
difermion angular distributions	HE-LHC/	
Would see early evidence of Z'	FNAL-SF	
-		

But large SM background

SSM and Universal Z' provide a

• Similar sensitivity for $g_{7} = 0.2$

 5σ reach < 95% CL

ranking of all colliders

- Hadron colliders directly produce Z' for mass < \sqrt{s} , clear discovery
 - No SM background with dileptons
 - 5σ reach $\approx 95\%$ CL
- A lepton collider followed by a hadron collider is needed for early evidence and clear discovery.

Machine	Туре	√s (TeV)	∫L dt (ab ⁻¹)	Source	Z' Model	5σ (TeV)	95% CL (TeV)	
				R.H.	$Z'_{SSM} \rightarrow dijet$	4.2	5.2	
HL-LHC	рр	p 14		ATLAS	$Z'_{SSM} \rightarrow l^+ l^-$	6.4	6.5	
				CMS	$Z'_{SSM} \rightarrow l^+ l^-$	6.3	6.8	
				EPPSU*	Z' _{Univ} (g _Z '=0.2)		6	
ILC250/	e+ e-	0.25	2	ILC	$Z'_{SSM} \rightarrow f^+ f^-$	4.9	7.7	
CLIC380/ FCC-ee				EPPSU*	Z' _{Univ} (g _Z '=0.2)		7	
HE-LHC/	рр	27	15	EPPSU*	Z' _{Univ} (g _Z '=0.2)		11	
FNAL-SF				ATLAS	$Z'_{SSM} \rightarrow e^+ e^-$	12.8	12.8	
ILC	$e^+ e^-$	0.5	4	ILC	$Z'_{SSM} \rightarrow f^+ f^-$	8.3	13	
				EPPSU*	Z' _{Univ} (g _Z '=0.2)		13	
CLIC	$e^+ e^-$	1.5	2.5	EPPSU*	Z' _{Univ} (g _Z '=0.2)		19	
Muon Collider	$\mu^+ \; \mu^-$	3	1	IMCC	Z' _{Univ} (g _Z '=0.2)	10	20	
ILC	e+ e-	1	8	ILC	$Z'_{SSM} \rightarrow f^+ f^-$	14	22	
				EPPSU*	Z' _{Univ} (g _Z '=0.2)		21	
CLIC	e⁺ e⁻	3	5	EPPSU*	Z' _{Univ} (g _Z '=0.2)		24	
				R.H.	$Z'_{SSM} \rightarrow dijet$	25	32	
FCC-hh	рр	100	30	EPPSU*	Z' _{Univ} (g _Z '=0.2)		35	
				EPPSU	$Z'_{SSM} \rightarrow l^+ l^-$	43	43	
Muon Collider	μ ⁺ μ [−]	10	10	IMCC	Z' _{Univ} (g _Z '=0.2)	42	70	
VLHC	рр	300	100	R.H.	$Z'_{SSM} \rightarrow dijet$	67	87	
Coll. In the Sea	рр	500	100	R.H.	$Z'_{SSM} \rightarrow dijet$	96	130	

Robert Harris and Felix Yu

Machines Ordered by Z' Sensitivity

ncreasing

ensitivity

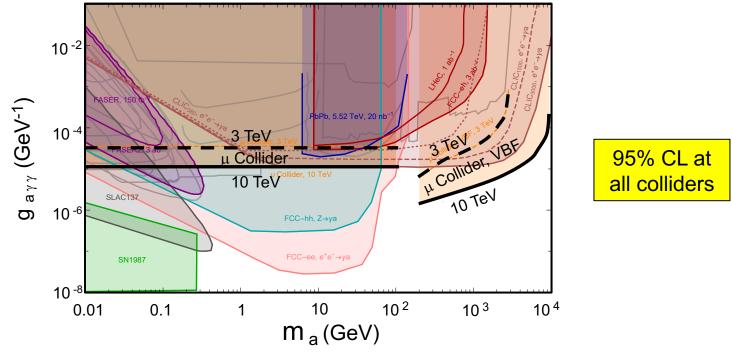
Z' and Lepton Universality Violation

- A scenario where a particular type of machine may be advantageous
 - Motivated by current anomalies
- Trident production 3 TeV μ Collider can see a Z' from a model of • Gauged $L\mu - L\tau$ number 10^{-1} • Produces the $(g-2)\mu$ anomaly Produces the B-physics 50 10^{-2} anomalies Observation of this Z' could 95% CL at establish new physics as a μ collider 10^{-3} source of these anomalies $\sqrt{s} = 3 \text{ TeV}$ Whitepaper: Luminosity = 1 ab^{-1} arXiv:2203.07261 10^{-4} 0.1 10

Robert Harris and Felix Yu

 $M_{Z'}$ (TeV)

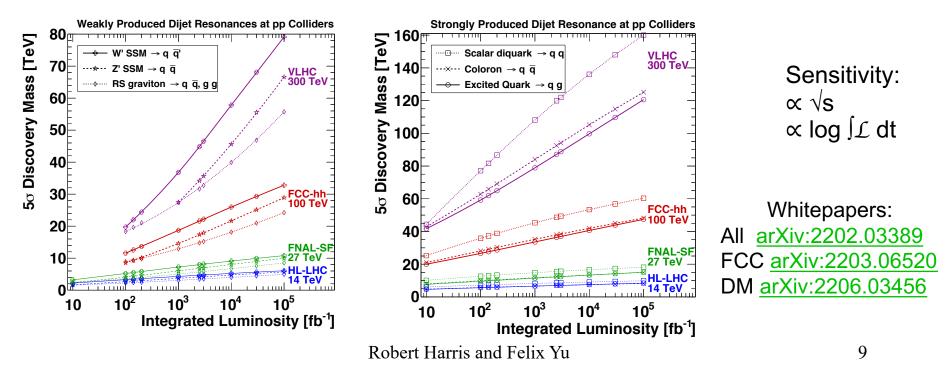
*



SSM W' and W'_R (right-handed) are popular models of new charged currents
 Three pp collider studies for di-fermions, mass reach > Z', one study of di-bosons

W	at HL-	LHC (14	TeV, 3 a	b ⁻¹)]	Events	$W' \rightarrow W Z'$			e				
Source	Source Model & Channel		5σ (TeV)	95% CL (TeV)		$ \begin{array}{c} $								
ATLAS	$W'_R \rightarrow tb$		4.3	4.9		600		+	· · ·					
R.H.	R.H. $W'_{SSM} \rightarrow dijet$		4.8	5.6										
CMS	$W'_{SSM} \rightarrow \tau \nu$			7.2		400 ──								
W'ss		$_{\rm SM} \rightarrow \mu \nu$ 7.1		7.3		200								
ATLAS	W'ss	$W'_{SSM} \rightarrow e \nu$		7.6										
	W' _{SS}	$_{M} \rightarrow l \nu$	7.7	7.9]	0	1000	2000	3000 4000 M	5000 jj(I) [GeV]				
Dijets at		HL-	LHC	FN	L-SF FCC		C-hh	VLHC		Coll. in the Sea				
рр		√s = 1 ∫Ldt =			27 TeV, $\sqrt{s} = 100 \text{ TeV}$ = 3 ab ⁻¹ $\int \text{Ldt} = 30 \text{ ab}^{-1}$		· · · · · · · · · · · · · · · · · · ·	√s = 300 TeV, ∫Ldt = 100 ab-1		√s = 500 TeV, ∫Ldt = 100 ab⁻¹				
Colliders		5σ 9	5% CL	5σ	95% CL	5σ	95% CL	5σ	95% CL	5 σ	95% CL			
	W' (SSM)				1									

Whitepapers: ATL-PHYS-PUB-2018-044, CMS-PAS-FTR-18-030, arXiv:2202.03389, arXiv:2103.10217


- New pseudo-scalars "a" from a broken symmetry, like QCD axion or pion.
 - ALP produced in association or via VBF decays to diphotons with coupling g_{a γ γ}
 - For $m_a < 100$ GeV, FCC is best, but HL-LHC heavy-ions will explore first.
 - → For m_a > 200 GeV, 10 TeV μ Collider is best

Whitepapers: FCC arXiv:2203.06520, µCollider: arXiv:2203.07261, arXiv:2203.05484

- Essential benchmark of discovery capability of pp colliders
- Sensitive to weakly produced models, to make discoveries from prior hints
 - An earlier lepton-collider could see first signs of a W', Z' or RS graviton
- Sensitive to strongly produced physics not accessible at lepton colliders
 - pp is only way to observe models like diquarks, colorons or excited quarks at high mass

- Direct discovery capability for a wide range of masses and models
 - Very roughly $\sqrt{s/2}$ for strongly and $\sqrt{s/4}$ for weakly produced dijet resonances

Snowmass 2021	HL-LHC		FNAL-SF		FCC-hh		VLHC		Collider in the Sea	
R. M. Harris	√s = 14 TeV, ∫Ldt = 3 ab ⁻¹		√s = 27 TeV, ∫Ldt = 3 ab-1		√s = 100 TeV, ∫Ldt = 30 ab ⁻¹		√s = 300 TeV, ∫Ldt = 100 ab⁻¹		√s = 500 TeV, ∫Ldt = 100 ab ⁻¹	
	5σ 95% CL		5σ 95% CL		5σ 95% CL		5σ 95% CL		5 σ	95% CL
Model	[TeV]	[TeV]	[TeV]	[TeV]	[TeV]	[TeV]	[TeV]	[TeV]	[TeV]	[TeV]
	Strongly Produced Models of Dijet Resonances									
Diquark	8.7	9.4	16	17	57	63	160	180	249	284
Coloron	7.1	7.8	13	14	45	51	125	143	193	224
q*	7.0	7.9	12	14	44	50	121	140	184	217
	Weakly Produced Models of Dijet Resonances									
W' (SSM)	4.8	5.6	8.2	9.9	29	36	79	99	117	150
Z' (SSM)	4.2	5.2	7.0	8.9	25	32	67	87	96	130
RS Grav.	3.5	4.4	5.8	7.5	21	27	56	73	81	109

Whitepapers: ALL arXiv:2202.03389, FCC arXiv:2203.06520, DM arXiv:2206.03456

- Snowmass 2021 has explored new bosons and heavy resonances
 - Multiple models and channels at many future colliders
- Z' bosons are our standard candle for BSM sensitivity at all colliders
 - Early indirect evidence for Z' at a lepton collider should be followed by clear direct discovery in the difermion channels at a hadron collider
 - \rightarrow µ collider has good mass reach and sensitivity to lepton universality violation
- Other models and channels also favor a future with multiple colliders
 - W' bosons: large mass reach at HL-LHC and higher energy pp colliders
 - Axion-like particles: μ collider most sensitive at high mass, FCC at low mass
 - Dijet resonances: pp colliders can discover physics that lepton colliders cannot
- New bosons and heavy resonances favors high energy multi-collider future
 - A hadron collider following a lepton collider, favoring μ collider due to its energy