

Longitudinally polarized ZZ scattering at the Muon Collider

Tianyi Yang,¹ Sitian Qian,¹ Congqiao Li,¹ Zhe Guan,¹
Fanqiang Meng,¹ Jie Xiao,¹ Meng Lu,² and Qiang Li¹
¹Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China
²School of Physics, Sun Yat-Sen University, Guangzhou 510275, China

> <u>tyyang99@pku.edu.cn</u> https://doi.org/10.1103/PhysRevD.104.093003

tyyang99@pku.edu.cn

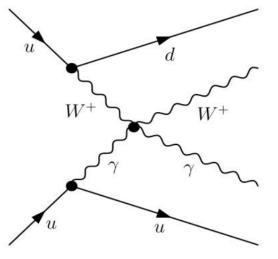
Peking University

2022/7/20

Contents

➤Introduction

- >Physics processes at the muon collider
- Simulation and analysis framework
- ➤Analysis results
- Discussion and outlook


VBS and longitudinal polarization

►VBS: scattering between two vector bosons radiated from incoming partons.

- > At the LHC:
 - \succ Two very forward jets, with large eta separation and invariant mass
 - ➢ Low hadronic activity in central region

➢longitudinal polarization

- Closely related to the important theoretical property of unitarity restoration through Higgs and possible new physics
- ≻ Below 10% of the total VBS
- > Needs long time to reach 5σ (same-sign WW at the CMS)
 - → full simulation: 2.7 σ at the 14TeV HL_LHC
 - \succ full Run II: about 1*σ*

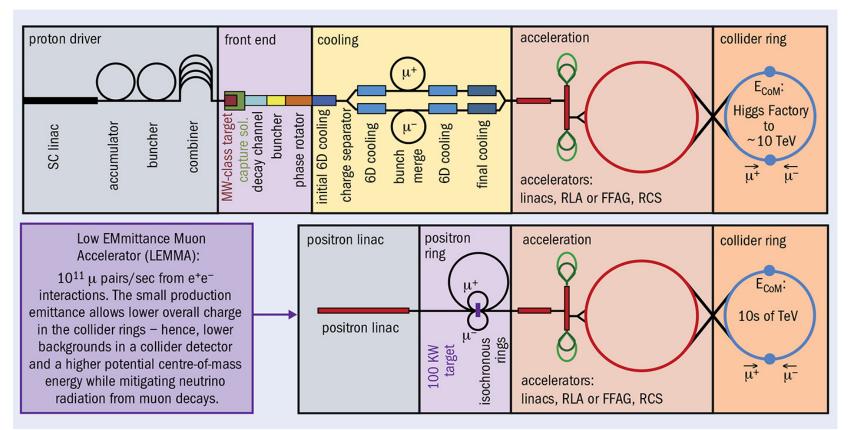
An example Feynman diagram of VBS at the LHC

tyyang99@pku.edu.cn

Longitudinally polarized ZZ scattering at the Muon Collider

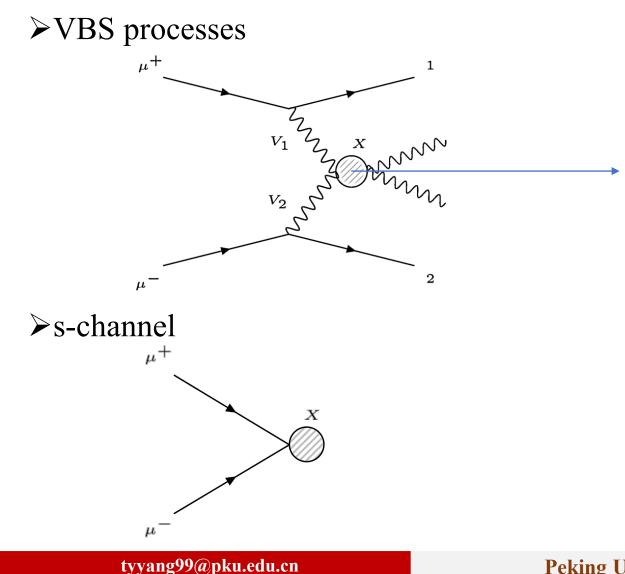
Why we choose the Muon Collider?

≻High collision energy


≻ Fundamental particle

 \succ more effective than LHC

 $> m_{\mu} \approx 207 m_e$

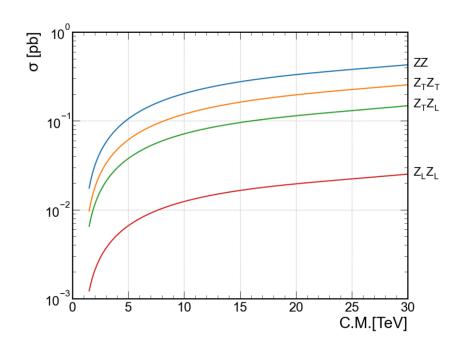

- Reduced synchrotron radiation
- ≻High luminosity

More details: <u>https://muoncollider.web.cern.ch/</u>

tyyang99@pku.edu.cn

 $X = nt\overline{t} + mV + kH$ $\mu^{+}\mu^{-} \to X \nu_{\mu}\overline{\nu}_{\mu} \qquad (WW_VBS)$ $\mu^{+}\mu^{-} \to X \mu^{+}\mu^{-} \qquad (ZZ_VBS)$ $\mu^{+}\mu^{-} \to X \mu^{\pm}\frac{(-)}{\nu_{\mu}} \qquad (WZ_VBS)$ (WW VBS)

Simpler than the LHC, can be expressed as a "high-luminosity weak boson collider"



Signal and backgrounds processes selection

Signal: $> Z_L Z_L \rightarrow 4l \text{ in WW}_VBS$

> 14 TeV,
$$L = 20ab^{-1}$$
; 6TeV, $L = 4ab^{-1}$, using
 $L = 10ab^{-1} \times \left(\frac{E_{\rm cm}}{10 {\rm TeV}}\right)^2$

- > Backgrounds:
 - ➤ Have sufficiently large cross section
 - \succ Exist the possibility of decaying to 4 leptons

SM process type	Selected background
WW_VBS	$H, HZ, HZZ, HWW, HH, WWZ, ZZZ, Z_TZ_T, Z_TZ_L, t\bar{t}Z$
ZZ_VBS	$H,WW,tar{t},4e,2e2\mu,4\mu$
WZ_VBS	WZ, WZH, WH, WWW, WZZ
s-channel	ZZ, WWZ

tyyang99@pku.edu.cn

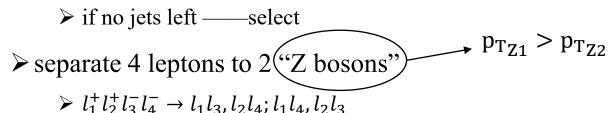
Analysis steps

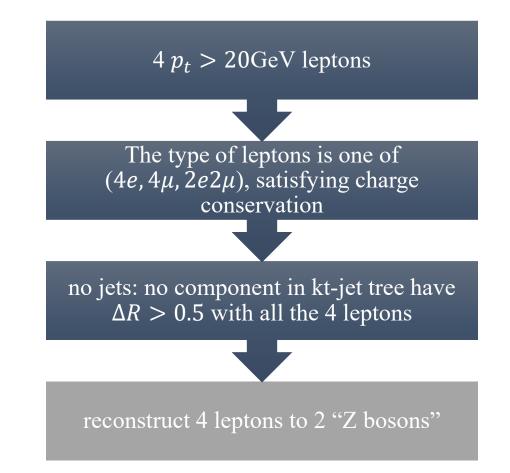
≻1.Events generation

MadGraph 2.9.X.lhePythia8.hepmcDelphes 3.5.0

►2.Initial selection

 \succ select events using root file generated by delphes.


➤3.Use Boosted Decision Tree(BDT) algorithm to distinguish between signals and backgrounds.


Initial events selection

- > 4 pt > 20GeV leptons
 - ➤ 2muons 2electrons
 - \rightarrow -----charge(11)*charge(12)==-1 and charge(13)*charge(14)==-1
 - ➤ 4muons or 4electrons
 - \succ ——sum(charge(41))==0 and \prod charge(41)==1
- > delta_r(Ktjets, leptons)
 - \succ clean leptons $\Delta R < 0.5$

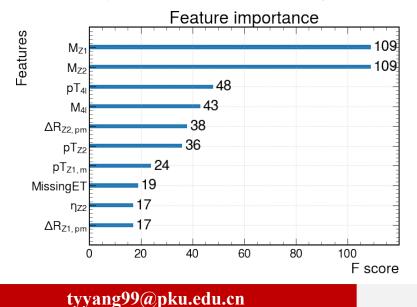
$$\succ \Delta M^2 = \left(M_{Z_1^\prime} - M_Z\right)^2 + \left(M_{Z_2^\prime} - M_Z\right)^2$$

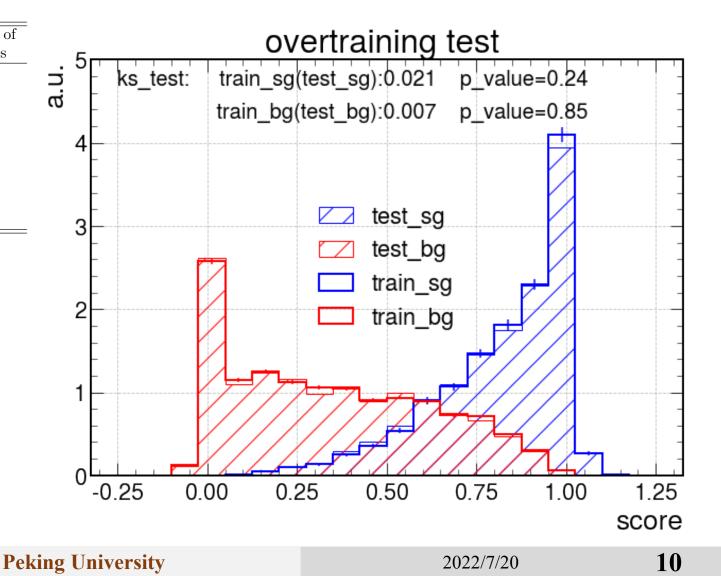
 \succ ΔM²_{13,24} > ΔM²_{14,23} → choose 14,23, vice versa \succ 2e2μ: Z₁ → e⁺e⁻, Z₂ → μ⁺μ⁻

- Shuffle the signal and background events and define the training and test sets with the event ratio of 2 : 1.
- ≻num of trees=200, max depth=5
- ➤apply the per-event weight to account for the cross-section difference among the processes. The weight is defined by:

$$n_L = \sigma_X L / N_{G_X}$$

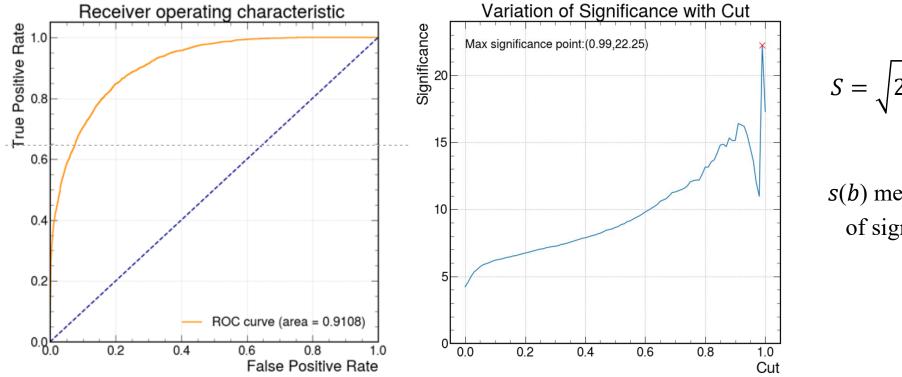
Snowmass 2022


Longitudinally polarized ZZ scattering at the Muon Collider

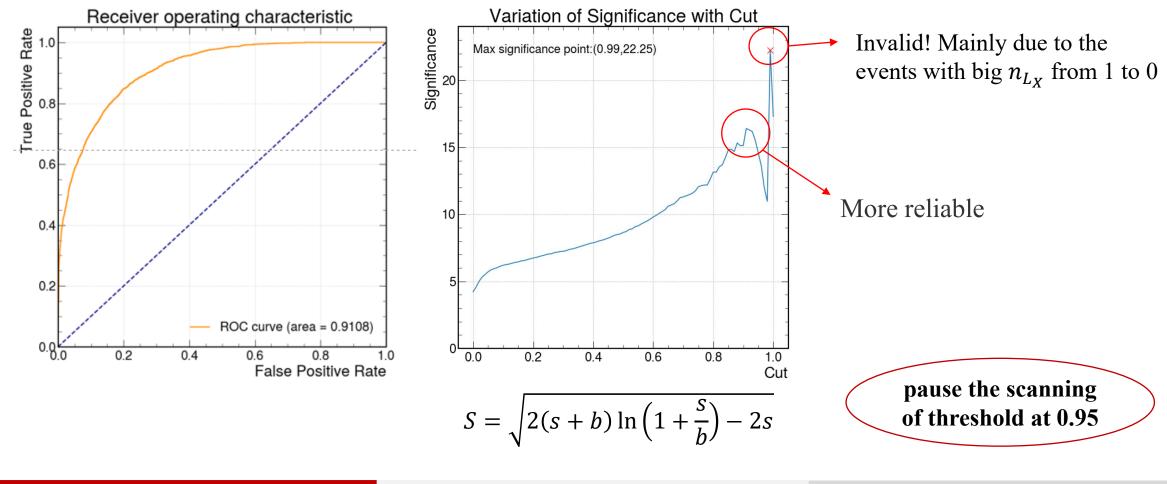

BDT training results— $\sqrt{S} = 14$ TeV

Features	Number of
	features
$(p_{ m T},\eta,\phi)$	12
$(p_{ m T},\eta,\phi,m_{ m inv})$	8
$(p_{{ m T},4\ell},\eta_{4l},\phi_{4l},m_{4l})$	4
$(p_{ m T},\eta,\phi)$	3
$(\Delta\eta,\Delta\phi,\Delta R)$	3
$(\Delta\eta,\Delta\phi,\Delta R)$	3
$(\Delta\eta,\Delta\phi,\Delta R)$	3
$(1, -1, 0)$ for $(4e, 4\mu, 2e2\mu)$	1
	37
	$(p_{\mathrm{T}}, \eta, \phi)$ $(p_{\mathrm{T}}, \eta, \phi, m_{\mathrm{inv}})$ $(p_{\mathrm{T},4\ell}, \eta_{4l}, \phi_{4l}, m_{4l})$ $(p_{\mathrm{T}}, \eta, \phi)$ $(\Delta\eta, \Delta\phi, \Delta R)$ $(\Delta\eta, \Delta\phi, \Delta R)$ $(\Delta\eta, \Delta\phi, \Delta R)$

Summary of features used for training BDT model



BDT training results

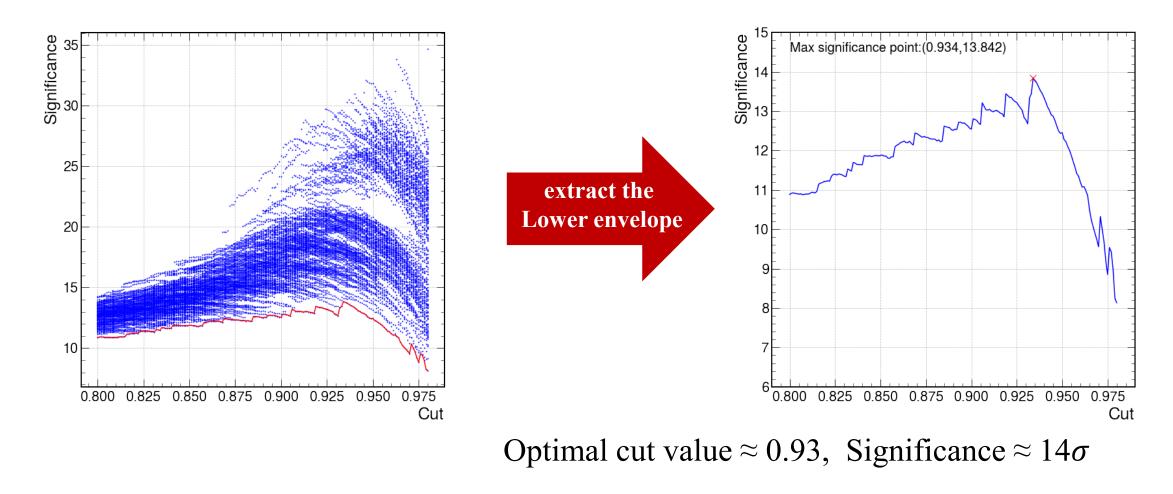

$$S = \sqrt{2(s+b)\ln\left(1+\frac{s}{b}\right) - 2s}$$

s(*b*) means the weighted number of signal(background) events

Peking University

Longitudinally polarized ZZ scattering at the Muon Collider

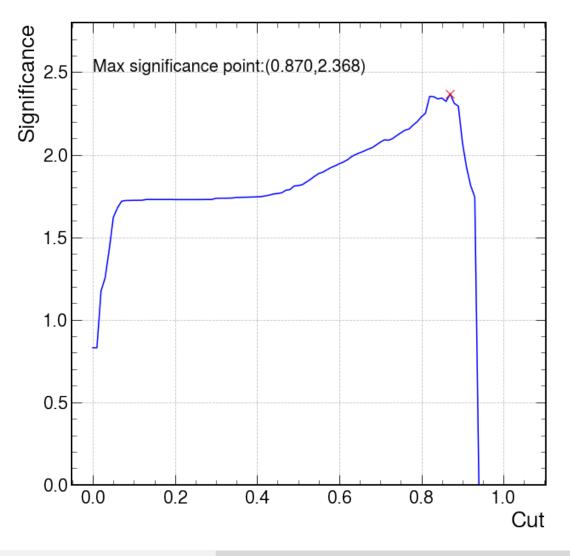
BDT training results


tyyang99@pku.edu.cn

Peking University

2022/7/20

BDT training results


▶ split the training and test sets with 150 different random configurations:

Comparison between $\sqrt{S} = 14$ TeV&6TeV

- Same analysis frame, but get $S_{\text{max}} \approx 2.4\sigma$
- ≻Three main reasons
 - ➤ 1. Smaller cross-section of signal, larger crosssection of some backgrounds
 - ▶ 2. Fewer events after initial selection (1/10 of signal)
 - 3. Harder to distinguish between signal and backgrounds—mainly between different polarization fraction

- $\gg \sqrt{s} = 14$ TeV
 - $> S \approx 14\sigma$ when $L = 20ab^{-1}$, to reach 5σ , $L' \approx 3000 \text{fb}^{-1}$

 \succ For the muon collider, such luminosity will take less than 5 years

 $\gg \sqrt{s} = 6 \text{TeV}$

 $\triangleright S \approx 2.4\sigma$ when $L = 4ab^{-1}$

Longitudinally polarized ZZ scattering at the Muon Collider

THANKS!

tyyang99@pku.edu.cn

Peking University

2022/7/20

BACKUP

tyyang99@pku.edu.cn

Peking University

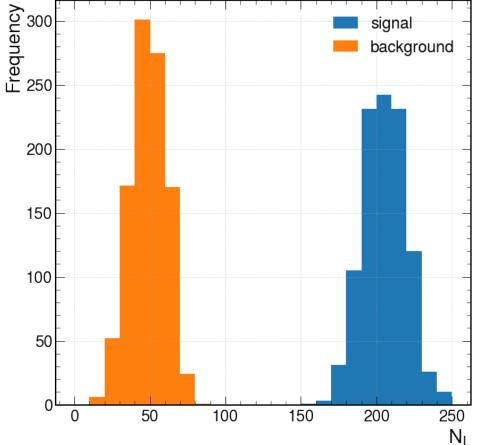
Comparison between BDT and cut-based method

≻cut-flow table and the corresponding significance:

cuts	s	b	$S\left[\sigma ight]$
$70 \text{GeV} < M_{Z1}, M_{Z2} < 140 \text{GeV}$	476.5	6592.1	5.8
$70 \text{GeV} < M_{Z1}, M_{Z2} < 140 \text{GeV}, \Delta R_{Z2,pm} < 0.4$	238.1	1165.9	6.8
$70 \text{GeV} < M_{Z1}, M_{Z2} < 140 \text{GeV}, \Delta R_{Z2,pm} < 0.4,$	213.5	424.9	9.6
$p_{\mathrm{T,4\ell}} < 300 \mathrm{GeV}$			
$70 \text{GeV} < M_{Z1}, M_{Z2} < 140 \text{GeV}, \Delta R_{Z2,pm} < 0.4,$	147.8	158.1	10.4
$p_{T,4\ell} < 300 \text{GeV}, \not \!\!\! E < 140 \text{GeV}$			

 $\Delta R_{Z2,pm}$: ΔR between the two leptons forming Z_2

$$L^{\prime\prime} = \frac{5^2}{10^2} L \approx 5 \text{ab}^{-1} = 5000 \text{fb}^{-1}$$

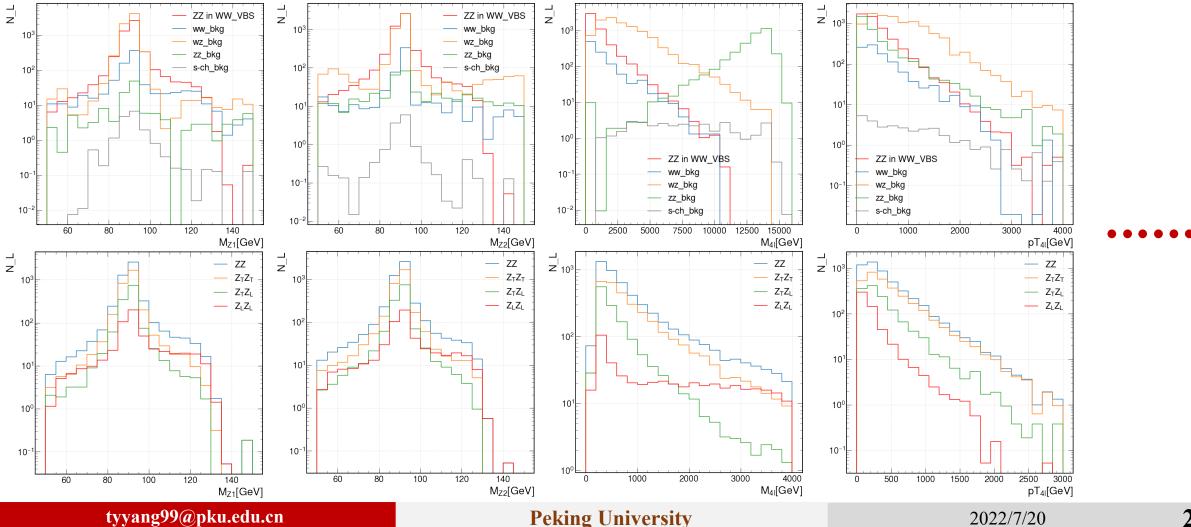


Comparison between BDT and cut-based method

Set cut=0.93, get distribution of N_L of signal and backgrounds in 1000 randomly selected cases

$$\succ \bar{s} = 205.7, \bar{b} = 49.2$$

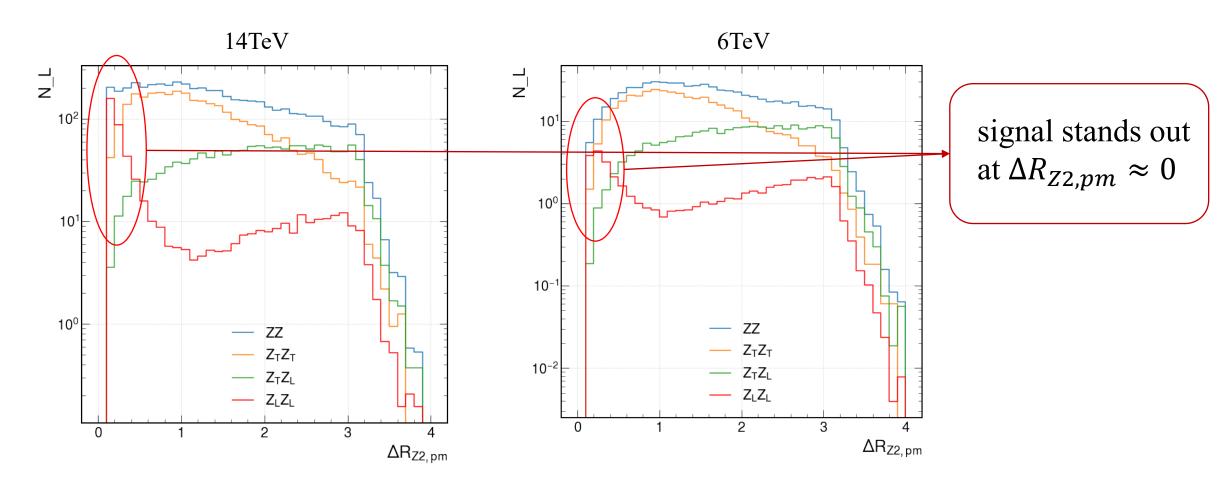
$$\succ \hat{\sigma}_s = 14.1, \hat{\sigma}_b = 11.7$$



Longitudinally polarized ZZ scattering at the Muon Collider

Comparison between BDT and cut-based method

≻Consider the top 10 features:



Longitudinally polarized ZZ scattering at the Muon Collider

Comparison between $\sqrt{S} = 14$ TeV&6TeV

≻Evidence of the 3rd reason

Discussion about the evidence

\succ Why exists a peak at $\Delta R_{Z2,pm} \approx 0$?

≻ MG run_card: no cut decay

False = cut_decays ! Cut decay products

\triangleright delphes muon_collider_card: $\Delta R_{\text{max}} = 0.1$ — $\Delta R_{\text{max}} = 0.5$ in CMS_card

module Isolation MuonIsolation { set CandidateInputArray MuonEfficiency/muons set IsolationInputArray EFlowMerger/eflow set OutputArray muons set DeltaRMax 0.1 set PTMin 0.5 set PTRatioMax 0.2 }

muon_collider_card

tyyang99@pku.edu.cn

CMS_card

set CandidateInputArray MuonEfficiency/muons

set IsolationInputArray EFlowFilter/eflow

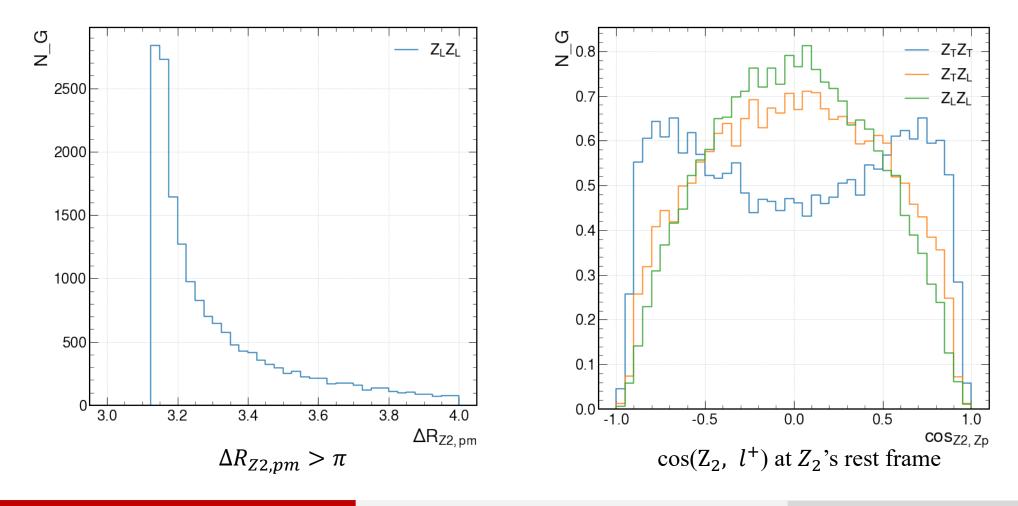
Peking University

set PTRatioMax 0.25

module Isolation MuonIsolation {

set OutputArray muons

set DeltaRMax 0.5


set PTMin 0.5

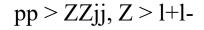
Longitudinally polarized ZZ scattering at the Muon Collider

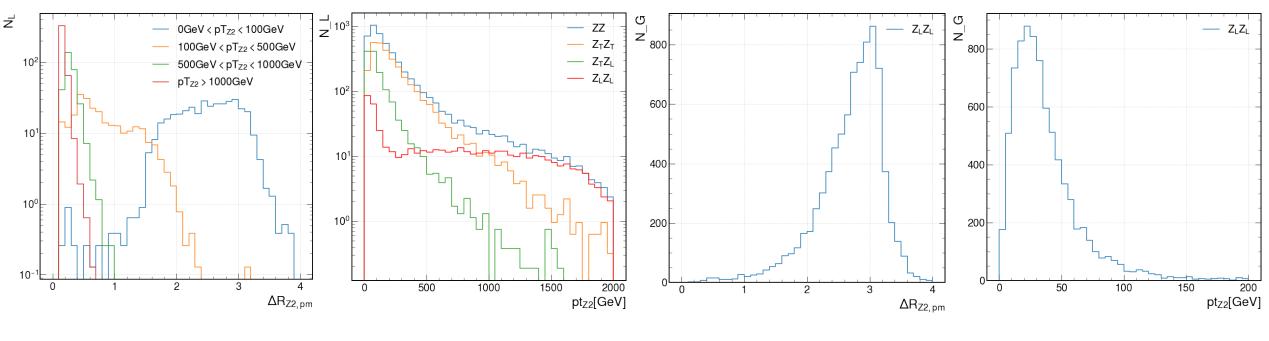
Verify the correctness of MC simulation

Check two variables at the Z boson's rest frame

tyyang99@pku.edu.cn

Cut-flow table and the corresponding *S* when $\Delta R_{Z_{1,2},pm} > 0.2$


cuts	s	b	$S[\sigma]$
$\Delta R_{Z_{1,2},pm} > 0.2$	334.3	14331.2	$\frac{2.8}{2.8}$
$\Delta R_{Z_{1,2},pm} > 0.2$ $0.2 < \Delta R_{Z_{1,pm}} < 0.8, \ 0.2 < \Delta R_{Z_{2,pm}} < 0.5$	108.7	14991.2 1007.6	3.4
1/1 2/1		695.4	$3.4 \\ 3.7$
$0.2 < \Delta R_{Z_1,pm} < 0.8, \ 0.2 < \Delta R_{Z_2,pm} < 0.5,$	100.0	095.4	3.7
$60 \text{GeV} < M_{Z1}, M_{Z2} < 130 \text{GeV}$	07.0	100 7	4 17
$0.2 < \Delta R_{Z_1,pm} < 0.8, \ 0.2 < \Delta R_{Z_2,pm} < 0.5,$	97.0	400.7	4.7
$60 \text{GeV} < M_{Z1}, M_{Z2} < 130 \text{GeV}, p_{\text{T},4\ell} < 500 \text{GeV}$			
$0.2 < \Delta R_{Z_1,pm} < 0.8, \ 0.2 < \Delta R_{Z_2,pm} < 0.5,$	61.7	90.2	5.9
$60 \text{GeV} < M_{Z1}, M_{Z2} < 130 \text{GeV}, p_{T,4\ell} < 500 \text{GeV},$			
$M_{4l} < 3000 \text{GeV}, \not \!\!\! E < 180 \text{GeV}$			


 $\succ \Delta R_{Z_{1,2},pm}$ has a significant impact on the results, require better detector resolution

Longitudinally polarized ZZ scattering at the Muon Collider

Comparison between the Muon Collider and the LHC

Distributions of $\Delta R_{Z2,pm}$ in different $p_{T_{Z2}}$ intervals at the Muon Collider Distributions of $\Delta R_{Z2,pm}$ and $p_{T_{Z2}}$ at the LHC