Vector Boson Scattering: Status and Prospects

Diogo Buarque Franzosi, Richard Ruiz, Michele Gallinaro

- Introduction
- VBS at the LHC
- Cross section and polarization
- VBS and BSM at Run3-5
- Future prospects beyond LHC

Planet Earth
Year 2022

= only

Community Summer Study
SN WMASS
July 17-26 2022, Seattle
Introduction

• Observation of the Higgs boson
 – Consistent with SM, within current uncertainties
 – W and Z acquire longitudinal polarization via the Brout-Englert-Higgs mechanism

• Is the Higgs the only player for the EWSB mechanism?
 – VBS is key process to test EWSB
 – Complementary to direct Higgs measurements

• LHC as a gauge boson collider to study VBS/VBF processes

Michele Gallinaro - "Vector Boson Scattering: Status and Prospects" - Snowmass - July 2022

arXiv:2106.01393
VBS and VBF

- VBF and VBS processes provide key measurements to probe the mechanism of EWK symmetry breaking and test effect of BSM models.
- $V_L V_L \rightarrow V_L V_L$ scattering is unitarized by the interference with the H exchange.

\[q \xrightarrow{W^\pm} q' \]

\[q \xrightarrow{W^\pm} \nu \]

\[q \xrightarrow{W^\pm} \ell^\pm \]

\[q \xrightarrow{W^\pm} \ell^\pm \]

Michele Gallinaro - "Vector Boson Scattering: Status and Prospects" - Snowmass - July 2022
Motivation

- Electroweak process characterized by VVjj (V=γ, W, Z) final state
- The physics potential
 - Precision test of EWSB at high energies
 - Probe the Higgs mechanism
 - Non-standard Higgs couplings
 - Higgs portal: New Higgs sector physics
- Probes nature of SM:
 - Direct access to triple/quartic gauge couplings
 - Sensitive to couplings btw Higgs and gauge bosons
 - Complementary to Higgs measurements at scales >m_H
- Portal to BSM:
 - Model-independent via EFTs (dim-6 and dim-8)
 - Constraints on aQGCs
Signal and background

- **VV production via vector boson scattering** ($V=W,Z,\gamma$)
 - Purely EW process
 - QCD induced diagrams are treated as background
- **V self-interactions** (and with H) precisely predicted
- Deviations from predictions may signal new physics in EW sector
- **Experimental challenges**: rare process, precision?

Michele Gallinaro - "Vector Boson Scattering: Status and Prospects" - Snowmass - July 2022
Experimental signature

- **Event topology**
 - 2 vector bosons produced centrally
 - 2 energetic forward jets in opposite hemispheres
 - Large m_{jj} and $\Delta \eta_{jj}$

- **Signature defined on diboson final state**
 - Fully leptonic: 4 e/μ + 2 jets
 - Semi-leptonic/hadronic: 1(2) e/μ + jets
 - Fully hadronic: 4 or 6 jets

- **Tree-level contributions to final state**
 - EWK: signal component $O(\alpha_{EW}^4)$
 - QCD: background, $O(\alpha_{EW}^2 \alpha_S^2)$, suppressed at high m_{jj}, high $|\Delta \eta_{jj}|$ region
 - Interference: $O(\%)$ of signal
Study VVjj processes

- **WWjj:**
 - EW production dominant over QCD
 - Distinct same-sign (SS) lepton final state with low bkg (“golden channel”)

- **WZjj:**
 - Sensitive to charged resonances or couplings
 - Clean signature, larger bkg

- **ZZjj:**
 - Fully reconstructed final state provides maximal information

Absolute and normalized differential cross section measurements:

- EW WZ: $6.8(5.3)\sigma$
- EW WW: far above 5σ
- EW ZZ: far above $5.5(3.9)\sigma$
Polarization: VBS WW

- Polarization measurements allow important tests of EWSB mechanism
 - Challenging since low expected yields for W_LW_L
 - four-momentum of W boson unknown
- EW production cross section of polarized WW
 - W and Z bosons have a spin 1 and can be longitudinally polarized as they are massive
- Polarization: simultaneous production of W/Z allows study fundamental interactions btw them

$$\text{obs (exp) significance } (W_LW_X): 2.3(3.1)\sigma$$

<table>
<thead>
<tr>
<th>Process</th>
<th>σB (fb)</th>
<th>Theoretical prediction (fb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W_L^\pm W_L^\pm$</td>
<td>0.32$^{+0.42}_{-0.40}$</td>
<td>0.44$^{+0.05}_{-0.05}$</td>
</tr>
<tr>
<td>$W_X^\pm W_T^\pm$</td>
<td>3.06$^{+0.51}_{-0.48}$</td>
<td>3.13$^{+0.35}_{-0.35}$</td>
</tr>
<tr>
<td>$W_L^\pm W_X^\pm$</td>
<td>1.20$^{+0.56}_{-0.53}$</td>
<td>1.63$^{+0.18}_{-0.18}$</td>
</tr>
<tr>
<td>$W_T^\pm W_T^\pm$</td>
<td>2.11$^{+0.49}_{-0.47}$</td>
<td>1.94$^{+0.21}_{-0.21}$</td>
</tr>
</tbody>
</table>

In the WW CoM frame

Michele Gallinaro - "Vector Boson Scattering: Status and Prospects" - Snowmass - July 2022
Advanced analysis methods

- Polarization in VBS
- Discriminating power of W_T vs W_L in jet substructure
 - W_T decay products preferentially anti-parallel to W momentum
 → asymmetry in p_T btw sub-jets
• Good agreement with SM
• Important to model QCD contribution: a challenging task
Final processes with taus in the final state

• Not yet studied in VBS processes
• Cross section measurements including τs
• Includes only 3rd generation quarks/leptons
• Syst unc: tauId, fakes
• If special role in EWK symmetry breaking, couplings to W may change
• Charged Higgs may alter coupling to W

Use R for signal extraction:
binned maximum likelihood fit

$R_\tau = \frac{p_{\tau}^{track}}{p_{\tau h}}$
• **Search for charged Higgs in GM model:**
 - H^+ and H^{++}

• **Search for resonant production**
 - Only fermiophobic H^+ considered
 - Require 2/3 leptons
 - Good bkg description of data in SR
Exotic searches

High mass sensitivity at LHC driven by $W\gamma$ and $W^±W^±$

- Type I seesaws hypothesize a new scalar singlet $ν_R$
 - Sterile neutrino N and mixing $|V_{lN}|^2$ accessible with VBF/VBS
 - Probe heavy neutrinos
 - Test dim-5 Weinberg operators

- Isolated photon + invisible
- SM: $Z(→νν)γjj$
 - $O(α_{EW}^5)$ process
- BSM
 - $H→γ+γ_D$
 - $H→invisible +γ$
Anomalous couplings

- Searches for BSM may be parametrized in the **Effective Field Theory (EFT)** approach
- Limits on aQGCs set using EFT. Dim-6 and dim-8 operators may modify VVjj production
 - Dim-5 operator may probe $0\nu\beta\beta$ and Lepton Number Violation (see prev. slide)

\[\mathcal{L} = \mathcal{L}_{SM} + \sum_i \frac{C_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_i \frac{C_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)} + \cdots \]

- EFT amplitudes grow with M_{VV} and the growth is non-physical above a scale Λ. Sets limits on validity of EFT approach
- Replace EFT amplitudes with SM in $>\Lambda$ region ("clipping")
Gauge boson self-interactions

- SM precisely predicts strength of EWK gauge boson interactions
- Studied several processes sensitive to TGCs/QGCs
 - Charged TGCs/QGCs consistent with SM predictions
 - Neutral TGCs/QGCs forbidden
 - Processes may occur through higher-order diagrams at very low rates
- LHC provides the most sensitive limits
Physics w/ forward protons

Study photon-mediated processes
- Tag leading protons w/forward det.
- Small expected SM production
- Search for (non-)resonant excess in high-mass tails (AQGC/EFT)

Exclusive diphotons
CMS-EXO-20-007
Light-by-light scattering: \(\gamma\gamma \to \gamma\gamma \), sensitive to ALPs, probe neutral QGC

Exclusive top quark pairs
CMS-TOP-21-007
Search for central exclusive production of ttbar pairs in pp interactions with tagged protons

Z\(\gamma\)+X production
CMS-PAS-EXO-19-009
Search for anomalous Z/\(\gamma^\ast\) central production

Exclusive WW/ZZ
CMS-SMP-21-004
Search for \(\gamma\gamma \to WW/ZZ \) with forward protons
Theoretical predictions

- Steady progress in computational techniques for VBS/VBF
 - NLO in EW, NLO in EW+QCD, PS beyond LL/N_C
 - EW@NLO in event generators
 - Include EW corrections in PS

- EW PDFs and their extrapolation to high-energy lepton colliders
 - Estimate PDFs for a high-energy muon beam
 - At Q=1 TeV, overall size of EW corrections is ~10-20% (much larger for specific final states)

- Significant progress in computing helicity-polarized cross sections
 - Diboson at NLO in EW+QCD
 - Diboson at NNLO in QCD

Michele Gallinaro - "Vector Boson Scattering: Status and Prospects" - Snowmass - July 2022
Prospects for HL-LHC

- Prospects for the study of VBS WW/WZ channels
 - Inclusive and polarized EW WW production

Based on existing 13 TeV results extrapolated to 14 TeV at HL-LHC
Detector upgrades @ HL-LHC

- **Timing detectors:** a new paradigm in HEP for PU rejection
- **Improve particle reconstruction/ID**
 - Increase object-ID efficiency and isolation
 - Improve missing transverse momentum resolution
 - Reduce fake jet reconstruction
 - Will help forward jet reconstruction in high PU
- **10%-20% gain in S/B in many Higgs decay channels**

HH production sensitivity (sigmas) at 3 ab$^{-1}$

<table>
<thead>
<tr>
<th>Channel</th>
<th>No MTD</th>
<th>$\langle \sigma \rangle$ 35 ps</th>
<th>$\langle \sigma \rangle$ 50 ps</th>
</tr>
</thead>
<tbody>
<tr>
<td>bbbb</td>
<td>0.89</td>
<td>0.95</td>
<td>0.94</td>
</tr>
<tr>
<td>bbtt</td>
<td>1.3</td>
<td>1.58</td>
<td>1.48</td>
</tr>
<tr>
<td>bbvv</td>
<td>1.7</td>
<td>1.85</td>
<td>1.83</td>
</tr>
<tr>
<td>bbWW</td>
<td>0.53</td>
<td>0.579</td>
<td>0.576</td>
</tr>
<tr>
<td>bbZZ</td>
<td>0.38</td>
<td>0.423</td>
<td>0.418</td>
</tr>
<tr>
<td>Combined</td>
<td>2.4</td>
<td>2.71</td>
<td>2.63</td>
</tr>
</tbody>
</table>

Luminosity gain
- +26%
- +20%

HL-LHC@140PU
Lepton colliders with $\sqrt{s} \sim$ few TeVs have advantages to measure VBS processes:
- well defined initial state, separate spin, polarization, quantum numbers, etc.

An e^+e^- collider (ILC or CLIC) can cover energies up to a few TeVs.

Photon-induced EW production of VBF/VBS becomes dominant at high \sqrt{s}.

Michele Gallinaro - "Vector Boson Scattering: Status and Prospects" - Snowmass - July 2022
VBS at e^+e^- colliders

- **Signal**: triple gauge couplings, Higgs VV couplings, quartic gauge couplings

- **Backgrounds**
VBS at e^+e^- colliders: sensitivity

- Polarized beams offer enhancement in sensitivity
 - Well defined initial state, clean final state
 - vs. EFT expansion parameters

- Differential cross sections with SM and non-SM values
 - Can probe dim-8 operators (ex. $F_{S,0,1}$)

Michele Gallinaro - "Vector Boson Scattering: Status and Prospects" - Snowmass - July 2022
Multi-boson production WW/ZH production

- same physics at e^+e^- & $\mu^+\mu^-$ colliders (except m_e vs m_μ)
- VBS takes over at $\sqrt{s}\sim2$-3 TeV
- WW parton luminosities exceed those at pp collider
- WW at 14 TeV with 20ab$^{-1}$ can probe dim-6 operators

Michele Gallinaro - "Vector Boson Scattering: Status and Prospects" - Snowmass - July 2022
Higgs pair production: VBF

- Higgs pair production gives access to Higgs self-coupling
- HH is one of the main goals @LHC and beyond
 - ggF and VBF production
 - Rare process
 - Both non-resonant (SM) and resonant (BSM) production
- 4-5σ sensitivity can be reached at HL-LHC
- 1% (?) precision can be achieved at 100TeV

Michele Gallinaro - "Vector Boson Scattering: Status and Prospects" - Snowmass - July 2022
Precision Higgs physics

- Higgs boson couplings to EW gauge bosons
- At high energy, H and HH production rely on VBF topology

\[\mu^+ \mu^- \rightarrow \nu_\mu \bar{\nu}_\mu \, H \quad (WW \, fusion) \]
\[\mu^+ \mu^- \rightarrow \mu^+ \mu^- \, H \quad (ZZ \, fusion) \]

Muons collider vs other

<table>
<thead>
<tr>
<th>√s (lumi.)</th>
<th>3 TeV (1 ab⁻¹)</th>
<th>6 (4)</th>
<th>10 (10)</th>
<th>14 (20)</th>
<th>30 (90)</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWH (Δκ₁)</td>
<td>0.26%</td>
<td>0.12%</td>
<td>0.073%</td>
<td>0.050%</td>
<td>0.023%</td>
<td>0.1% [41] (68% C.L.)</td>
</tr>
<tr>
<td>\Lambda/\sqrt{c_i} (TeV)</td>
<td>4.7</td>
<td>7.0</td>
<td>9.0</td>
<td>11</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>ZZH (Δκ₂)</td>
<td>1.4%</td>
<td>0.89%</td>
<td>0.61%</td>
<td>0.46%</td>
<td>0.21%</td>
<td>0.13% [17] (95% C.L.)</td>
</tr>
<tr>
<td>\Lambda/\sqrt{c_i} (TeV)</td>
<td>2.1</td>
<td>2.6</td>
<td>3.2</td>
<td>3.6</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>WWHH (Δκ₃)</td>
<td>5.3%</td>
<td>1.3%</td>
<td>0.62%</td>
<td>0.415%</td>
<td>0.20%</td>
<td>5% [36] (68% C.L.)</td>
</tr>
<tr>
<td>\Lambda/\sqrt{c_i} (TeV)</td>
<td>1.1</td>
<td>2.1</td>
<td>3.1</td>
<td>3.8</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>HHHH (Δκ₄)</td>
<td>25%</td>
<td>10%</td>
<td>5.6%</td>
<td>3.9%</td>
<td>2.0%</td>
<td>5% [22, 23] (68% C.L.)</td>
</tr>
<tr>
<td>\Lambda/\sqrt{c_i} (TeV)</td>
<td>0.49</td>
<td>0.77</td>
<td>1.0</td>
<td>1.2</td>
<td>1.7</td>
<td></td>
</tr>
</tbody>
</table>

WWH/ZZHH couplings

HHH/WWHH couplings

Michele Gallinaro - "Vector Boson Scattering: Status and Prospects" - Snowmass - July 2022
VBS @ 100 TeV

- **VV leptonic final states**
 - Final state fully reconstructed
 - Consider EFT dim-8 operators

- **pp→ ZZjj**
 - Sensitive to scalar resonances, background to VBF H production

Michele Gallinaro - "Vector Boson Scattering: Status and Prospects" - Snowmass - July 2022
$W_L W_L @ 100$ TeV

- $W_L W_L$ scattering relevant for VVH coupling
- Longitudinal component extracted from angular distribution of the two leptons
- Extract HWW coupling mod. constraints k_W

VBS $W_L W_L$ Same Sign Cross Uncertainty

| $|\eta| < 2.5$ | $|\eta| < 4.5$ | $p_T > 30$ GeV |
|---|---|---|
| $|\eta| < 4.0$ | $|\eta| < 6.0$ | $p_T > 30$ GeV |
| $|\eta| < 4.0$ | $|\eta| < 6.0$ | $p_T > 50$ GeV |

3% at 30ab$^{-1}$

FCC-hh Simulation (Delphes)

- $m_{\gamma\gamma} > 1000$ GeV
- $m_{\gamma\gamma} > 500$ GeV
- $m_{\gamma\gamma} > 200$ GeV
- $m_{\gamma\gamma} > 50$ GeV

Michele Gallinaro - "Vector Boson Scattering: Status and Prospects" - Snowmass - July 2022
Summary

• VBS to investigate SM and probe NP effects
 – Direct scrutiny of EWSB
 – Extensions to SM offer alternative EWSB mechanisms

• Several processes and final states investigated
 – Rare process, limited statistics
 – Indirect BSM studies with the EFT approach
 – Current and future studies at LHC and beyond

• VBS processes observed but need to be studied

⇒ Clean environment of lepton collider at highest energies is a fantastic opportunity for searches for NP in the EW sector