Vector Boson Scattering: Status and Prospects

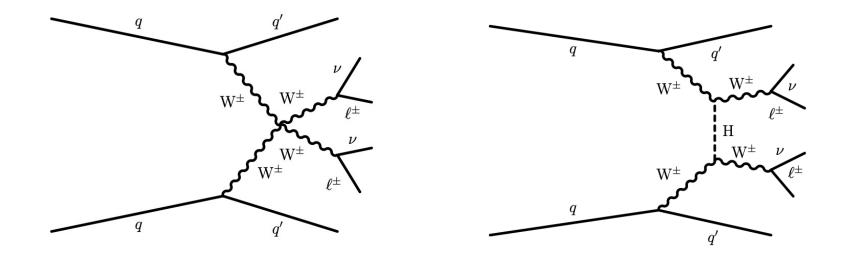
Diogo Buarque Franzosi, Richard Ruiz, Michele Gallinaro

Introduction
 VBS at the LHC
 Cross section and polarization
 VBS and BSM at Run3-5
 Future prospects beyond LHC

Planet Earth Year 2022

Community Summer Study

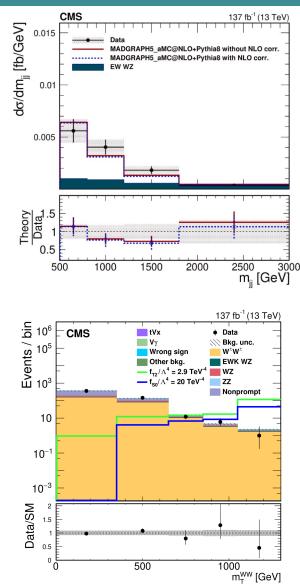
SN 🕸 WMASS


July 17-26 2022, Seattle

= only

VBS and VBF

- VBF and VBS processes provide key measurements to probe the mechanism of EWK symmetry breaking and test effect of BSM models
- $V_L V_L \rightarrow V_L V_L$ scattering is unitarized by the interference with the H exchange


WW & WZ & ZZ

PLB 809(2020)135710, arXiv:2004.10612

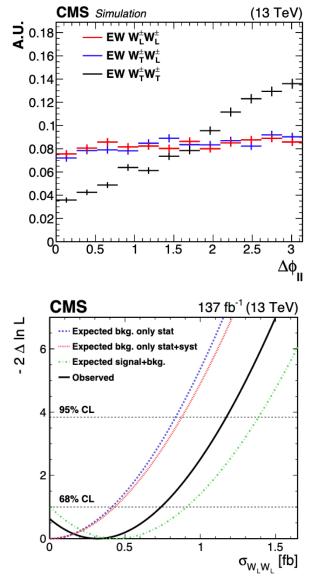
Study VVjj processes

- WWjj:
 - EW production dominant over QCD
 - Distinct same-sign (SS) lepton final state with low bkg ("golden channel")
- WZjj:
 - Sensitive to charged resonances or couplings
 - Clean signature, larger bkg
- ZZjj:
 - Fully reconstructed final state provides maximal information

Absolute and normalized differential cross section measurements EW WZ: $6.8(5.3)\sigma$ EW WW: far above 5σ EW ZZ: far above $5.5(3.9)\sigma$

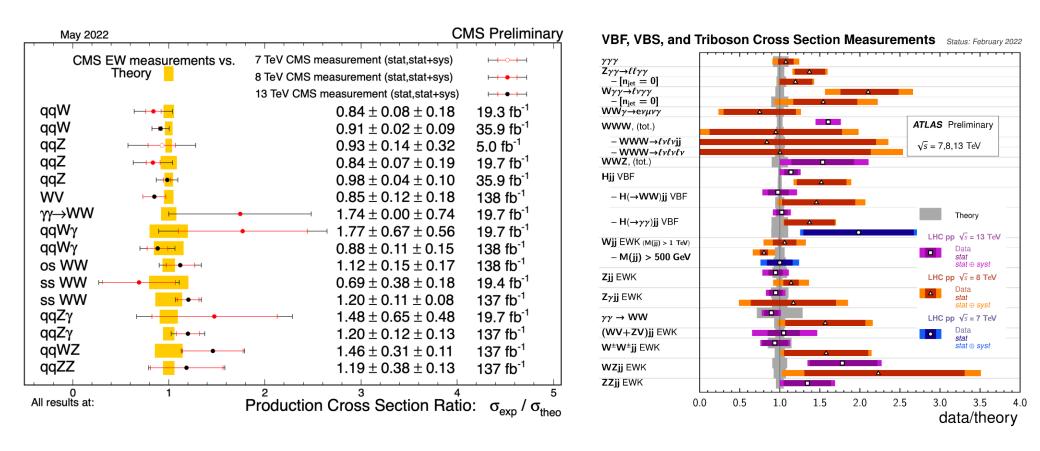
Polarization: VBS WW

PLB 812(2020)136018


- Polarization measurements allow important tests of EWSB mechanism
 - Challenging since low expected yields for W_LW_L
 - four-momentum of W boson unknown
- EW production cross section of polarized WW
 - W and Z bosons have a spin 1 and can be longitudinally polarized as they are massive
- Polarization: simultaneous production of W/Z allows study fundamental interactions btw them

obs (exp) significance (W_LW_X): 2.3(3.1) σ

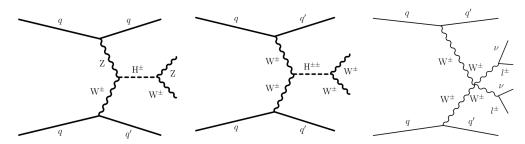
Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction (fb)
$W_L^{\pm}W_L^{\pm}$	$0.32\substack{+0.42\\-0.40}$	0.44 ± 0.05
$W_X^\pm W_T^\pm$	$3.06^{+0.51}_{-0.48}$	3.13 ± 0.35
$W^{\pm}_L W^{\pm}_X$	$1.20\substack{+0.56\\-0.53}$	1.63 ± 0.18
$W_T^{\pm}W_T^{\pm}$	$1.20\substack{+0.56\\-0.53}\\2.11\substack{+0.49\\-0.47}$	1.94 ± 0.21

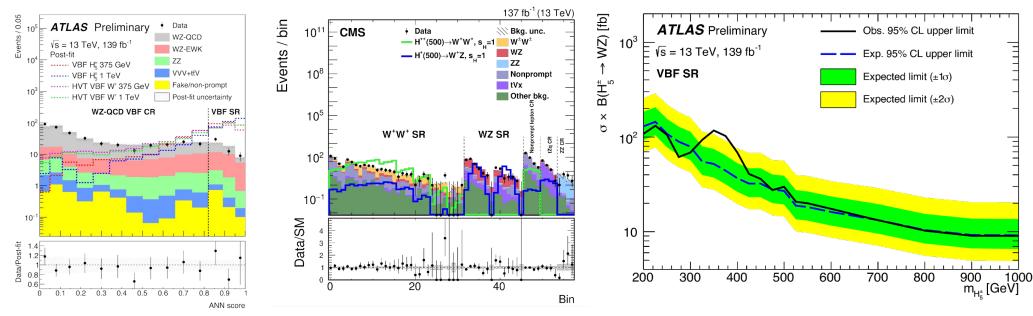

In the WW CoM frame

Michele Gallinaro - "Vector Boson Scattering: Status and Prospects" - Snowmass - July 2022

4

Cross section summary



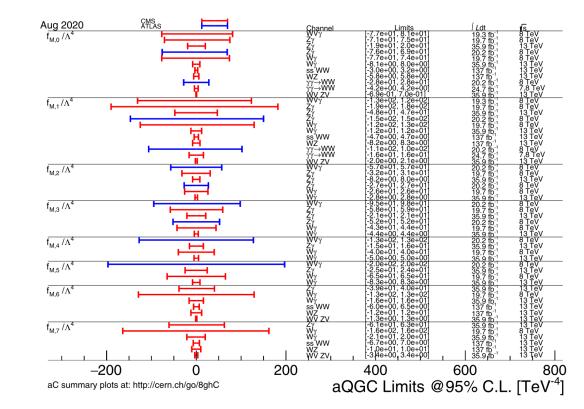

- Good agreement with SM
- Important to model QCD contribution: a challenging task

Charged Higgs etc.

EPJC 81(2021)723, arXiv:2207.03925

- Search for charged Higgs in GM model: H⁺ and H⁺⁺
- Search for resonant production
 - Only fermiophobic H⁺ considered
 - Require 2/3 leptons
 - Good bkg description of data in SR

Anomalous couplings


- Searches for BSM may be parametrized in the Effective Field Theory (EFT) approach
- Limits on aQGCs set using EFT. Dim-6 and dim-8 operators may modify VVjj production
 - Dim-5 operator may probe $0\nu\beta\beta$ and Lepton Number Violation (see prev. slide)

$$\mathcal{L} = \mathcal{L}_{SM} + \Sigma_i \frac{C_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \Sigma_i \frac{C_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)} + \cdots$$

- EFT amplitudes grow with M_{VV} and the growth is non-physical above a scale Λ . Sets limits on validity of EFT approach
- Replace EFT amplitudes with SM in $>\Lambda$ region ("clipping")

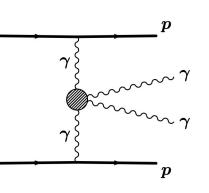
Gauge boson self-interactions

- SM precisely predicts strength of EWK gauge boson interactions
- Studied several processes sensitive to TGCs/QGCs
 - Charged TGCs/QGCs consistent with SM predictions
 - Neutral TGCs/QGCs forbidden
 - Processes may occur through higher-order diagrams at very low rates
- LHC provides the most sensitive limits

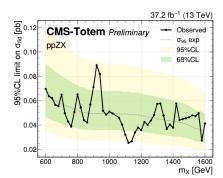
Physics w/ forward protons


JHEP 07(2018)153, CMS-EXO-21-007, CMS-TOP-21-007, CMS-EXO-19-009, CMS-SMP-21-004

Study photon-mediated processes

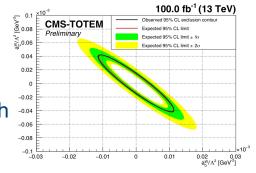

- Tag leading protons w/forward det.
- Small expected SM production
- Search for (non-)resonant excess in high-mass tails (AQGC/EFT)

 \boldsymbol{p}


 \boldsymbol{p}

Exclusive diphotons CMS-EXO-21-007 Light-by-light scattering: $\gamma\gamma \rightarrow \gamma\gamma$, sensitive to ALPs, probe neutral QGC

Zγ+X production CMS-PAS-EXO-19-009 Search for anomalous Z/γ^* central production



Exclusive top quark pairs CMS-TOP-21-007

Search for central exclusive production of ttbar pairs in pp interactions with tagged protons combined 1 2 3 4 5 6 95% CL on $\sigma_{\gamma\gamma \to t}$ [pb]

CMS-TOTEM preliminary 29.4 fb⁻¹ (2017, 13 TeV)

Exclusive WW/ZZ CMS-SMP-21-004 Search for $\gamma\gamma \rightarrow$ WW/ZZ with forward protons

Theoretical predictions

- Steady progress in computational techniques for VBS/VBF
 - NLO in EW, NLO in EW+QCD, PS beyond LL/N_C
 - EW@NLO in event generators

MoCaNLO LO

MoCaNLO NLO EW

POWHEG NLO EW + PS

1000 1250

 $m_{\rm ii}[{\rm GeV}]$

1500 1750

2000

Include EW corrections in PS

 10^{4}

 10^{3}

 10^{2}

 10^{1}

 $10^{(}$

 10^{-1}

 10^{-2}

 10^{-3}

 10^{-4}

 $f_{i/\mu}(x,Q)$

Q = 1 TeV

-EWPDF

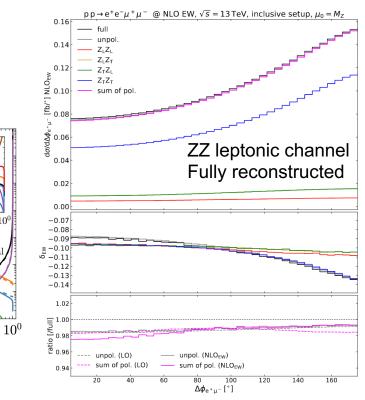
 10^{-3}

- - QED⊗QCD/LO

- Estimate PDFs for a highenergy muon beam
- At Q=1 TeV, overall size of EW corrections is ~10-20% (much larger for specific final states)

1.4

Ratio


 10^{-2}

 10^{-1}

 $10^{(}$

 $\mu_{\rm va}$

- Significant progress in • computing helicitypolarized cross sections
 - Diboson at NLO in EW+QCD
 - Diboson at NNLO in QCD

Michele Gallinaro - "Vector Boson Scattering: Status and Prospects" - Snowmass - July 2022

 10^{-2}

x

 $d\sigma$ [fb]/ dm_{ii} [GeV]

 10^{-3}

 10^{-4}

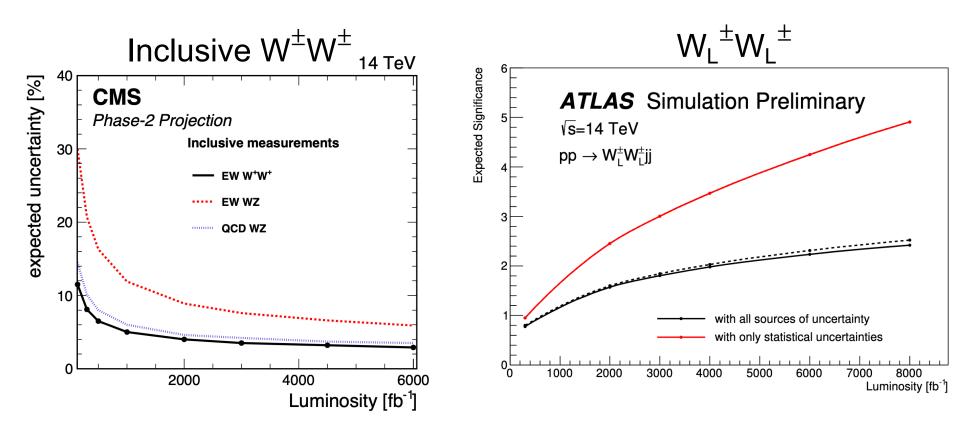
 10^{-5}

 -10°

-20

-30

500

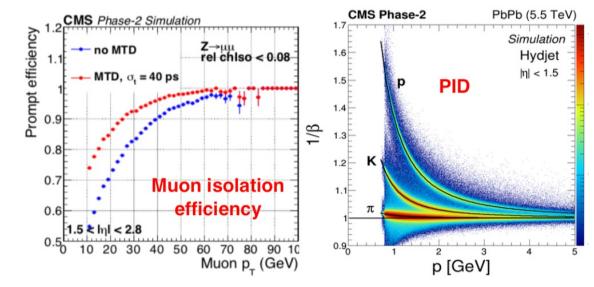

750

 $\delta^{[\%]}_{0}$

Prospects for HL-LHC

CMS-PAS-FTR-21-001, ATL-PHYS-PUB-2018-052

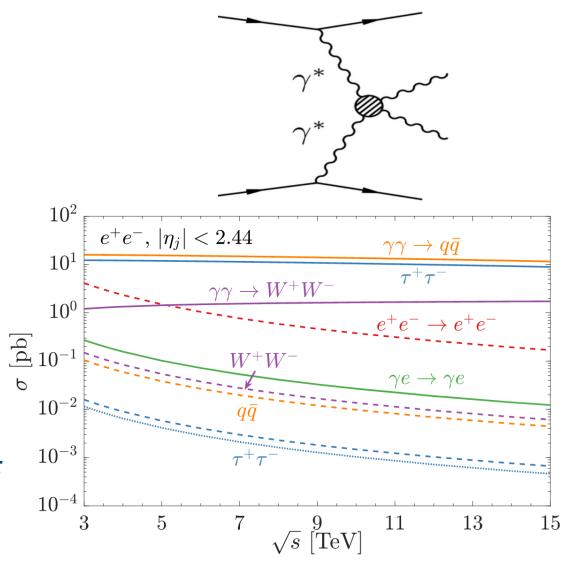
- Prospects for the study of VBS WW/WZ channels
 - Inclusive and polarized EW WW production


Based on existing 13 TeV results extrapolated to 14 TeV at HL-LHC

Detector upgrades @ HL-LHC

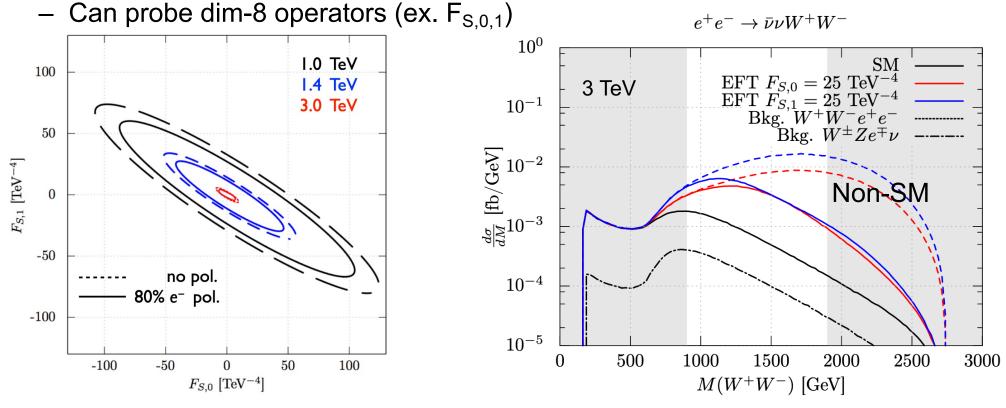
CERN-CMS-TDR-020

- Timing detectors: a new paradigm in HEP for PU rejection
- Improve particle reconstruction/ID
 - Increase object-ID efficiency and isolation
 - Improve missing transverse momentum resolution
 - Reduce fake jet reconstruction
 - Will help forward jet reconstruction in high PU
- 10%-20% gain in S/B in many Higgs decay channels


Channel	No MTD	<σ _t > 35 ps	<σ _t > 50 ps				
bbbb	0.89	0.95	0.94				
bbтт	1.3	1.58	1.48				
bbyy	1.7	1.85	1.83				
bbWW	0.53	0.579	0.576				
bbZZ	0.38	0.423	0.418				
Combined	2.4	2.71	2.63				
Luminosity gain	-	+26%	+20%				
HL-LHC@140PU							

HH production sensitivity (sigmas) at 3 ab⁻¹

VBS @ Lepton Colliders


- Lepton colliders with √s~few TeVs have advantages to measure VBS processes
 - well defined initial state, separate spin, polarization, quantum numbers, etc.
- An e⁺e⁻ collider (ILC or CLIC) can cover energies up to a few TeVs
- Photon-induced EW production of VBF/VBS becomes dominant at high \sqrt{s}

VBS at e⁺e⁻ colliders: sensitivity

arXiv:1607.03030

- Polarized beams offer enhancement in sensitivity
 - Well defined initial state, clean final state
 - vs. EFT expansion parameters
- Differential cross sections with SM and non-SM values

Michele Gallinaro - "Vector Boson Scattering: Status and Prospects" - Snowmass - July 2022

Precision Higgs physics


arXiv:2008.12204

- Higgs boson couplings to EW gauge bosons
- At high energy, H and HH production rely on VBF topology

$$\mu^+\mu^- \to \nu_\mu \bar{\nu}_\mu H \qquad (WW \text{ fusion})$$
 $\mu^+\mu^- \to \mu^+\mu^- H \qquad (ZZ \text{ fusion}).$

Muon collider vs other

\sqrt{s} (lumi.)	$3 \text{ TeV} (1 \text{ ab}^{-1})$	6 (4)	10 (10)	14 (20)	30 (90)	Comparison
$WWH \ (\Delta \kappa_W)$	0.26%	0.12%	0.073%	0.050%	0.023%	0.1% [41]
Λ/\sqrt{c}_i (TeV)	4.7	7.0	9.0	11	16	(68% C.L.)
$ZZH (\Delta \kappa_Z)$	1.4%	0.89%	0.61%	0.46%	0.21%	0.13% [17]
Λ/\sqrt{c}_i (TeV)	2.1	2.6	3.2	3.6	5.3	(95% C.L.)
$WWHH \ (\Delta \kappa_{W_2})$	5.3%	1.3%	0.62%	0.41%	0.20%	5% [<mark>36</mark>]
$\Lambda/\sqrt{c_i}$ (TeV)	1.1	2.1	3.1	3.8	5.5	(68% C.L.)
$HHH~(\Delta\kappa_3)$	25%	10%	5.6%	3.9%	2.0%	5% [22, 23]
$\Lambda/\sqrt{c_i}$ (TeV)	0.49	0.77	1.0	1.2	1.7	(68% C.L

WWH/ZZHH couplings

HHH/WWHH couplings

Summary

- VBS to investigate SM and probe NP effects
 - Direct scrutiny of EWSB
 - Extensions to SM offer alternative EWSB mechanisms
- Several processes and final states investigated
 - Rare process, limited statistics
 - Indirect BSM studies with the EFT approach
 - Current and future studies at LHC and beyond
- VBS processes observed but need to be studied

\Rightarrow Clean environment of lepton collider at highest energies is a fantastic opportunity for searches for NP in the EW sector

Introduction

arXiv:2106.01393

- Observation of the Higgs boson
 - Consistent with SM, within current uncertainties
 - W and Z acquire longitudinal polarization via the Brout-Englert-Higgs mechanism
- Is the Higgs the only player for the EWSB mechanism?
 - VBS is key process to test EWSB
 - Complementary to direct Higgs measurements
- LHC as a gauge boson collider to study VBS/VBF processes

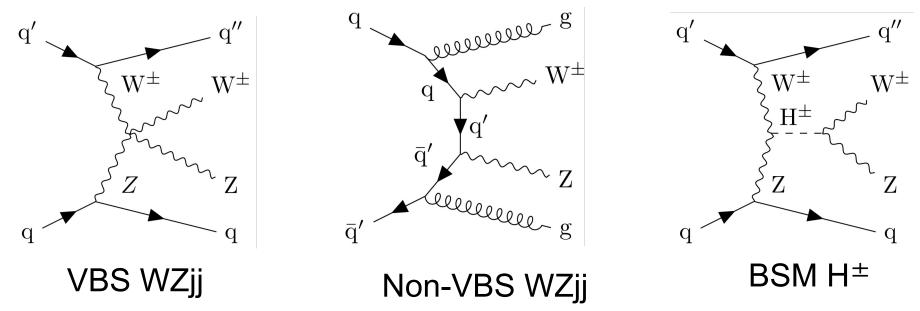
Vector boson scattering processes: Status and prospects

Diogo Buarque Franzosi ^{g,d,*,1}, Michele Gallinaro ^{h,1}, Richard Ruiz ^{i,1}, Thea K. Aarrestad ^c, Flavia Cetorelli ¹, Mauro Chiesa ^o, Antonio Costantini ^k, Ansgar Denner ^t, Stefan Dittmaier ^f, Robert Franken ^t, Pietro Govoni ¹, Tao Han ^p, Ashutosh V. Kotwal ^a, Jinmian Li ^r, Kristin Lohwasser ^q, Kenneth Long ^c, Yang Ma ^p, Luca Mantani ^k, Matteo Marchegiani ^e, Mathieu Pellen ^f, Giovanni Pelliccioli ^t, Karolos Potamianos ⁿ, Jürgen Reuter ^b, Timo Schmidt ^t, Christopher Schwan ^m, Michał Szleper ^s, Rob Verheyen ^j, Keping Xie ^p, Rao Zhang ^r

Motivation

- Electroweak process characterized by VVjj (V=γ,W,Z) final state
- The physics potential
 - Precision test of EWSB at high energies
 - Probe the Higgs mechanism
 - Non-standard Higgs couplings
 - Higgs portal: New Higgs sector physics
- Probes nature of SM:
 - Direct access to triple/quartic gauge couplings
 - Sensitive to couplings btw Higgs and gauge bosons⁹²
 - Complementary to Higgs measurements at scales >m_H
- Portal to BSM:
 - Model-independent via EFTs (dim-6 and dim-8)
 - Constraints on aQGCs

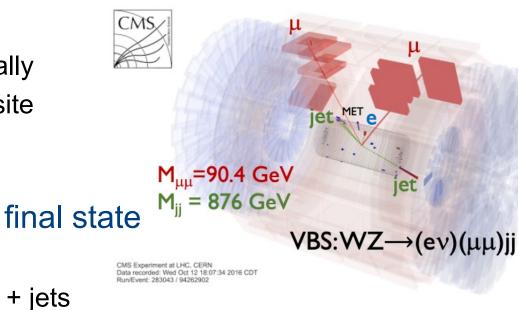
Michele Gallinaro - "Vector Boson Scattering: Status and Prospects" - Snowmass - July 2022


19

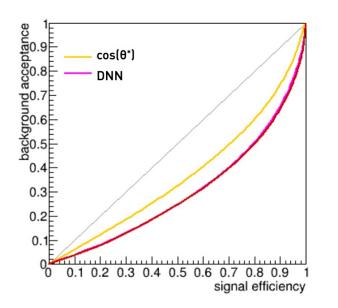
 q_{f1}

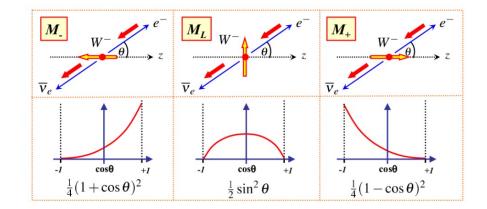
Signal and background

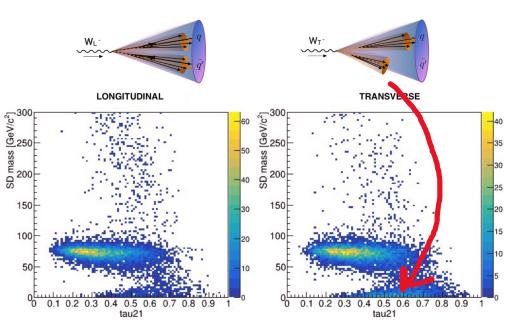
arXiv:2005.09889


- VV production via vector boson scattering (V=W,Z,γ)
 - Purely EW process
 - QCD induced diagrams are treated as background
- V self-interactions (and with H) precisely predicted
- Deviations from predictions may signal new physics in EW sector
- Experimental challenges: rare process, precision?

Experimental signature

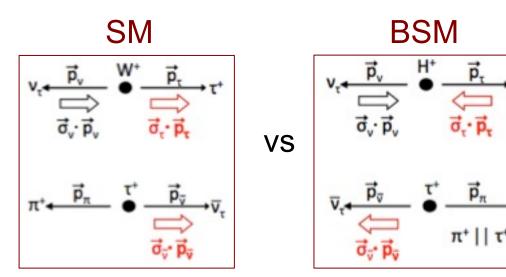

Event topology

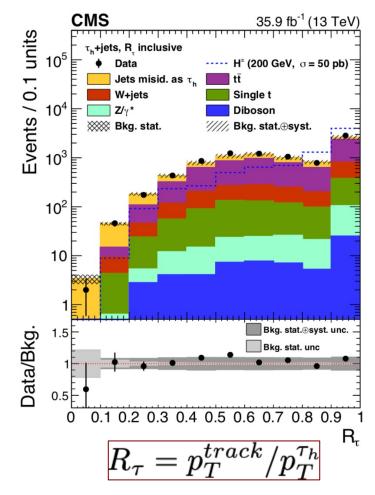

- 2 vector bosons produced centrally
- 2 energetic forward jets in opposite hemispheres
- Large m_{jj} and $\Delta\eta_{jj}$
- Signature defined on diboson final state
 - Fully leptonic: 4 e/μ + 2 jets
 - Semi-leptonic/hadronic: 1(2) e/μ + jets
 - Fully hadronic: 4 or 6 jets
- Tree-level contributions to final state
 - EWK: signal component $O(\alpha_{EW}^4)$
 - QCD: background,O($\alpha_{EW}^2 \alpha_S^2$), suppressed at high m_{jj}, high $|\Delta \eta_{jj}|$ region
 - Interference: O(%) of signal



Advanced analysis methods

- Polarization in VBS
- discriminating power of W_T vs W_L in jet substructure
 - W_T decay products preferentially anti-parallel to W momentum
 →asymmetry in p_T btw sub-jets

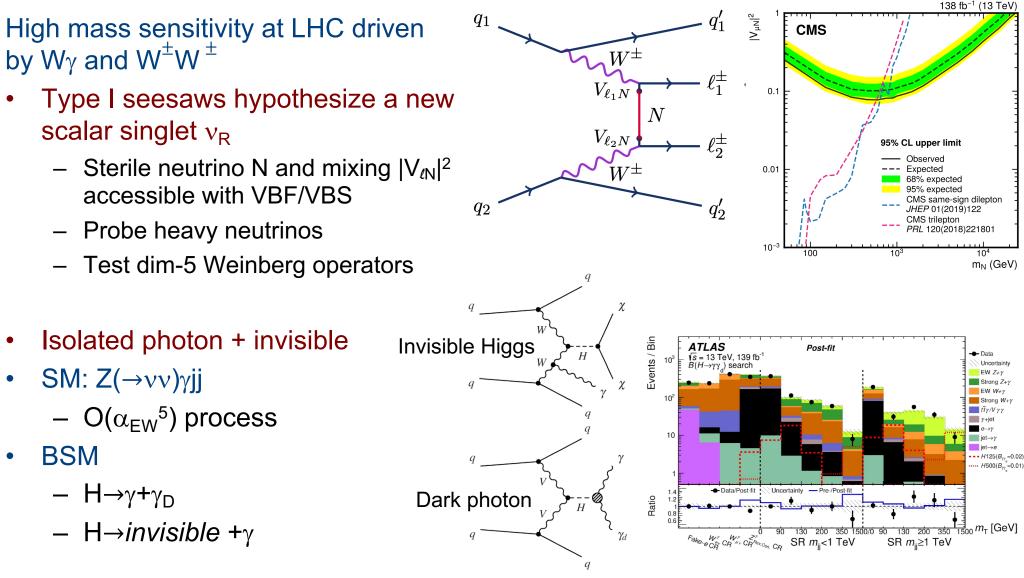



Tau leptons

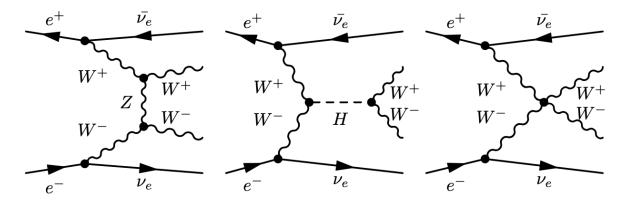
arXiv:1903.04560

Final processes with taus in the final state

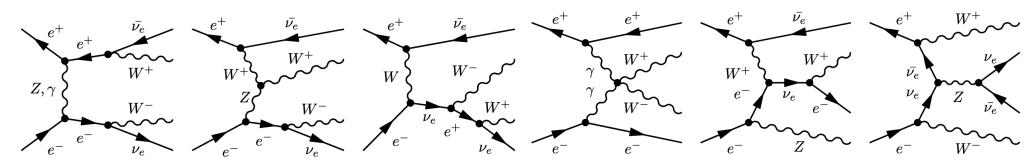
- Not yet studied in VBS processes
- cross section measurements including $\boldsymbol{\tau}s$
- Includes only 3rd generation quarks/leptons
- Syst unc: tauld, fakes
- If special role in EWK symmetry breaking, couplings to W may change
- Charged Higgs may alter coupling to W



Use R for signal extraction: binned maximum likelihood fit


Exotic searches

arXiv:2011.02547, arXiv:2206.08956



VBS at e⁺e⁻ colliders

 Signal: triple gauge couplings, Higgs VV couplings, quartic gauge couplings

Backgrounds

VBS @ muon collider

VBS

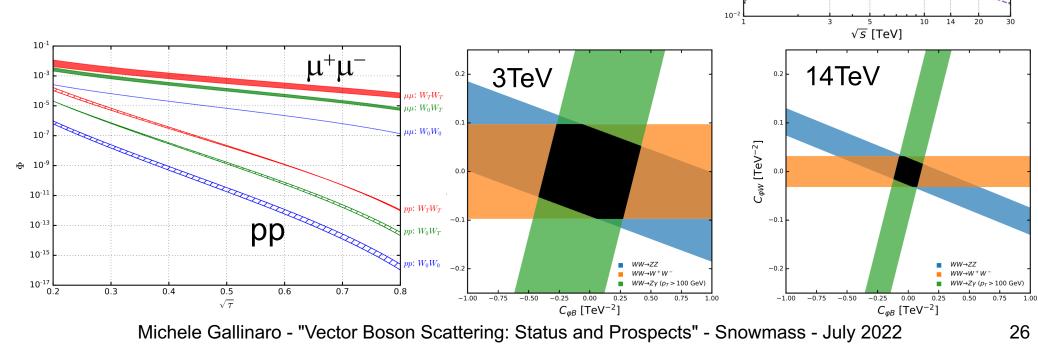
s-channel

zz zγ wwz

777

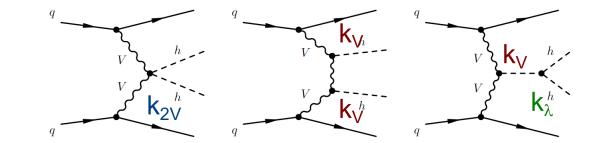
10

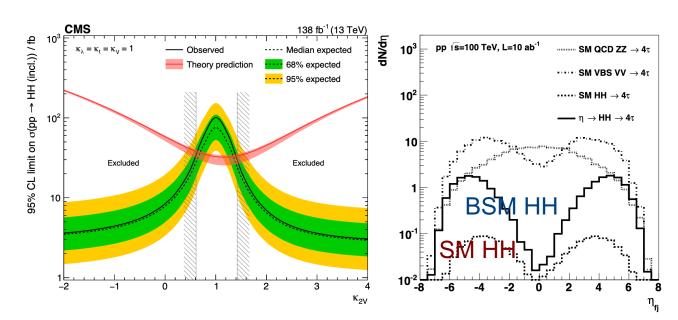
10


10

10-

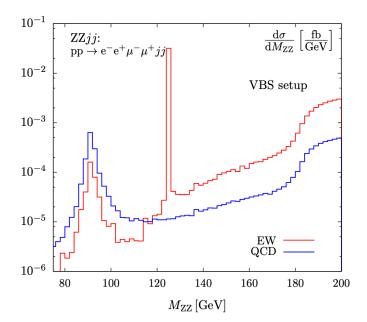
σ [fb]

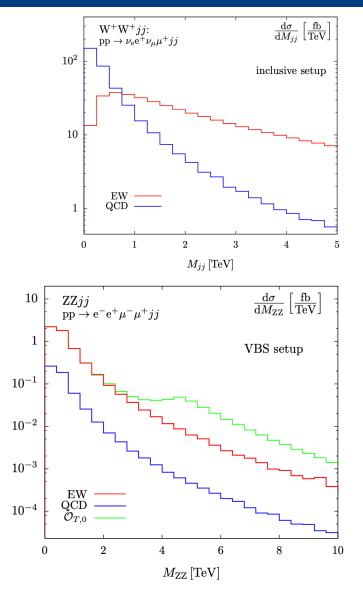

Multi-boson production WW/ZH production


- same physics at e⁺e⁻ & μ⁺μ⁻ colliders (except m_e vs m_μ)
- VBS takes over at \sqrt{s} ~2-3TeV
- WW parton luminosities exceed those at pp collider
- WW at 14 TeV with 20ab⁻¹ can probe dim-6 operators

Higgs pair production: VBF

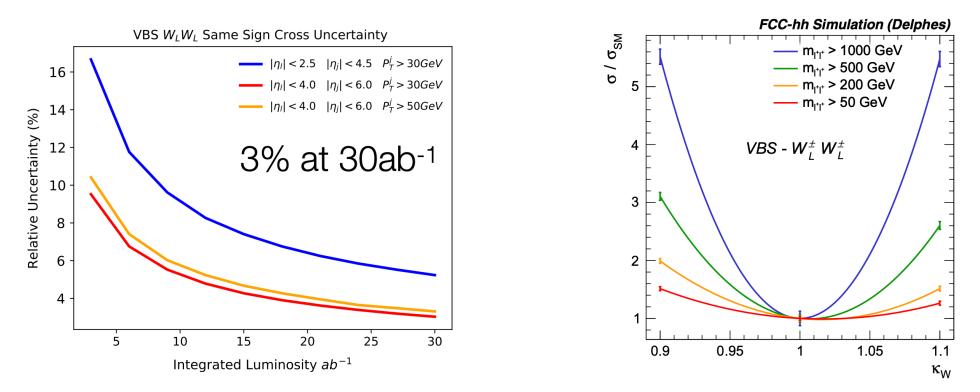
- Higgs pair production gives access to Higgs selfcoupling
- HH is one of the main goals
 @LHC and beyond
 - ggF and VBF production
 - Rare process
 - Both non-resonant (SM) and resonant (BSM) production
- 4-5σ sensitivity can be reached at HL-LHC
- 1% (?) precision can be achieved at 100TeV





VBS @ 100 TeV

• VV leptonic final states


- Final state fully reconstructed
- Consider EFT dim-8 operators
- pp→ ZZjj
 - Sensitive to scalar resonances, background to VBF H production

W_LW_L @ 100 TeV

- W_LW_L scattering relevant for VVH coupling
- Longitudinal component extracted from angular distribution of the two leptons
- Extract HWW coupling mod. constraints k_W

