

Anomalous Quartic Gauge couplings at a Muon Collider

Elham E Khoda University of Washington, Seattle

on behalf of

Brad Abbot¹, Aram Apyan², Bianca Azartash-Namin¹, Veena Balakrishnan¹ Jeffrey Berryhill³, Shih-Chieh Hsu⁴, Sergo Jindariani³, Mayuri Kawale¹, Elham E Khoda⁴, Ryan Parsons¹, Alexander Schuy⁴, Michael Strauss¹, John Stupak¹ ¹ University of Oklahoma, ²Brandeis University, ³Fermilab, ⁴University of Washington

> Snowmass CSS, Seattle July 20, 2022

 \checkmark

Vector Boson Scattering

Vector Boson Scattering (VBS): $VV \rightarrow VV$ scattering

- Key measurements to fully explore EWSB and probe for BSM models
- with amplitudes involving Higgs bosons

Window for new physics

Muon Collider as a "Weak Boson Collider"

- Muon collider provides a clean environment
- More energy efficient than the hadron colliders

High energy muon colliders

- At few ~TeV it is a high luminosity boson collider
- Perfect for fully exploring VBS
- Production cross sections grow as logs while the corresponding s-channel decrease as ~1/s

3 / 15

Introduction

- Goal is to study anomalous quartic gauge couplings (aQGCs) at a muon collider with VBS WW final state
- In this study, we consider $\sqrt{s} = 6$ TeV
- Target luminosity 4 ab⁻¹
- Studying the full-hadronic channels with two final states:
 - $WW\nu\nu$ and $WW\mu\mu$ •

 $WW\nu\nu$ Channel

Snowmass White paper

arXiv:2203.08135

$WW\mu\mu$ Channel

Effective Field Theory and aQGC

Hints for new physics using Effective Field Theory (EFT) approach

aQGC via EFT dimension-8 operators

Looking at dimension-8 operators

• Grouped into 3 categories, S-type operators, T-type operators, M-type operators

We can set limits on $S_0, S_1, M_0, M_1, M_6, M_7, T_0, T_1, T_2$ (*WWvv* analysis) $S_0, S_1, M_0 - M_7, T_0, T_0 - T_7$ (*WWµµ* analysis)

	WWWW	WWZZ	$WW\gamma Z$	$WW\gamma\gamma$	ZZZZ	$ZZZ\gamma$	$ZZ\gamma\gamma$	$Z\gamma\gamma\gamma$	$\gamma\gamma\gamma\gamma\gamma$
$\mathcal{O}_{S,0},\mathcal{O}_{S,1}$	\checkmark	\checkmark			\checkmark				
$\mathcal{O}_{M,0}, \mathcal{O}_{M,1}, \mathcal{O}_{M,6} , \mathcal{O}_{M,7}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
$\mathcal{O}_{M,2}$, $\mathcal{O}_{M,3}$, $\mathcal{O}_{M,4}$, $\mathcal{O}_{M,5}$		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
$\mathcal{O}_{T,0}$, $\mathcal{O}_{T,1}$, $\mathcal{O}_{T,2}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\mathcal{O}_{T,5}$, $\mathcal{O}_{T,6}$, $\mathcal{O}_{T,7}$		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\mathcal{O}_{T,8}$, $\mathcal{O}_{T,9}$					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Total amplitude:

$$\left|A_{SM} + \sum_{i} c_{i}A_{i}\right|^{2} = |A_{SM}|^{2} + \sum_{i} c_{i}2Re(A_{SM}^{*}A_{i}) + \sum_{i} c_{i}^{2}|A_{i}|^{2} + \cdots$$

SM interference quadratic

Elham E Khoda (UW)

$$\mathcal{O}_{S_0} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right] \times \left[\left(D^{\mu} \Phi \right)^{\dagger} D^{\nu} \Phi \right]$$
$$\mathcal{O}_{S_1} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D^{\mu} \Phi \right] \times \left[\left(D_{\nu} \Phi \right)^{\dagger} D^{\nu} \Phi \right]$$
$$\mathcal{O}_{S_2} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right] \times \left[\left(D^{\nu} \Phi \right)^{\dagger} D^{\mu} \Phi \right]$$

The Major backgrounds are SM- $WW\nu\nu$, $WW\mu\mu$, WWZ ($Z \rightarrow \nu\nu$), $WZ\mu\nu$ and $ZZ\nu\nu$

- Generate the Interference and Quadratic terms separately
- **Background samples:** Wizard + Pythia 8 + Delphes (muon config) • EFT Signal samples: MadGraph + Pythia 8 + Delphes (muon config)

The Major backgrounds are SM- $WW\mu\mu$, ZZZ / WZW (triboson), and 4V production

- **Background samples:** MadGraph + Pythia 8 + Delphes (muon config)
- EFT Signal samples: MadGraph + Pythia 8 + Delphes (muon config) Generate the Interference and Quadratic terms separately

Triboson: ZZZ / WZW

Quadboson: 4V

We studied the Fully Hadronic channel

Jet reconstruction: VLC jets with R=1.0 using inclusive algorithms

1. Exactly 0 lepton

Important to reduce the large photon-induced backgrounds

2. >= 2 jets with $m_{iet} > 50 \text{ GeV}$

The Ws are being reconstructed as jets

3. Missing mass > 200 GeV Reduce $WW(Z \rightarrow vv)$, which should have $m_{miss} \sim 91$ GeV

4. $\cos \theta_{j} < 0.8$

Suppress t-channel exchanges, which leads to the vector bosons being close to the beam pipe

$$m_{\rm miss} = \sqrt{(\sqrt{s} - E_{\rm WW})^2 - |\vec{p}_{\rm WW}|^2},$$

$$(\sqrt{s} - E_{\rm WW})^2 - |\vec{p}_{\rm WW}|^2,$$

We studied the Fully Hadronic channel

Jet reconstruction: VLC jets with R=1.0 using inclusive algorithms

1. Exactly 2 oppositely charged muons

2. Mass of the muon pair $(m_{\mu\mu}) > 106 \text{ GeV}$ Reduce contribution from the Z boson decay

3. Exactly 2 jets, 50 GeV < $m_{\rm jet}$ < 100 Ge Reduce low energy events

WWvv Channel

Mass of the W-pair

WWμμ Channel

• Tested one at a time, no cross operator term

$WW\nu\nu$ Channel

 $WW\mu\mu$ Channel

WW $\nu\nu$ Limits (TeV⁻⁴)

- $f_{\mathrm{M},0}/\Lambda^4$ [-0.032, 0.035]
- $f_{{
 m M},1}/\Lambda^4~[-0.088, 0.065]$
- $f_{\mathrm{M},7}/\Lambda^4$ [-0.12, 0.17]
- $f_{\mathrm{S},0}/\Lambda^4$ [-0.22, 0.20]
- [-0.14, 0.14] $f_{{
 m S},1}/\Lambda^4$
- $f_{{
 m T},0}/\Lambda^4~[-0.0062, 0.003]$

 $f_{\rm T,1}/\Lambda^4~[-0.0082, 0.003]$

 $f_{\rm T,2}/\Lambda^4 \ [-0.0096, 0.0046]$

WW $\mu\mu$ Limits (TeV⁻⁴) $f_{\rm T,0}/\Lambda^4$ [-0.02, 0.01] $f_{{
m T},1}/\Lambda^4~~[-0.03,0.01]$ $f_{\rm T,2}/\Lambda^4$ [-0.06, 0.02] $f_{{
m T},6}/\Lambda^4~~[-0.01,0.01]$ $f_{\rm T,7}/\Lambda^4$ [-0.02, 0.01]

LHC Constraints on different dim-8 operators

arXiv:2204.10034

coefficient	constraint	coefficient	constraint	coefficient	$\operatorname{constra}$
f_{S_0}/Λ^4	[-2.7, 2.7] [24]	f_{M_0}/Λ^4	[-0.69, 0.70] [24]	f_{T_0}/Λ^4	[-0.12, 0.1]
f_{S_1}/Λ^4	[-3.4, 3.4] [24]	f_{M_1}/Λ^4	[-2.0, 2.1] [24]	f_{T_1}/Λ^4	[-0.12, 0.1]
f_{S_2}/Λ^4	-	f_{M_2}/Λ^4	[-2.8, 2.8] [25]	f_{T_2}/Λ^4	[-0.28, 0.2]
		f_{M_3}/Λ^4	[-4.4, 4.4] [25]	f_{T_5}/Λ^4	[-0.5, 0.5]
		f_{M_4}/Λ^4	[-5, 5] [25]	f_{T_6}/Λ^4	[-0.4, 0.4]
		f_{M_5}/Λ^4	[-8.3, 8.3] [25]	f_{T_7}/Λ^4	[-0.9, 0.9]
		f_{M_7}/Λ^4	[-3.4, 3.4] [25]	f_{T_8}/Λ^4	[-0.43, 0.4]
				f_{T_9}/Λ^4	[-0.92, 0.9]

- The analysis presented in Snowmass white-paper was a quick proof-of-principle study
- 6 TeV Muon collider is expected to set better limits than the LHC

EFT validity and unitarity bound

- would be violated without a form factor
- $WW\nu\nu$ channel

$WW \nu \nu$	Limits (TeV $^{-4}$)	Uni
$f_{{ m M},0}/\Lambda^4$	$\left[-0.032, 0.035 ight]$	
$f_{{ m M},1}/\Lambda^4$	$\left[-0.088, 0.065 ight]$	
$f_{{ m M},7}/\Lambda^4$	[-0.12, 0.17]	
$f_{{ m S},0}/\Lambda^4$	[-0.22, 0.20]	
$f_{{ m S},1}/\Lambda^4$	[-0.14, 0.14]	
$f_{{ m T},0}/\Lambda^4$	$\left[-0.0062, 0.0030 ight]$	
$f_{{ m T},1}/\Lambda^4$	$\left[-0.0082, 0.0031 ight]$	
$f_{{ m T},2}/\Lambda^4$	[-0.0096, 0.0046]	

• Use <u>VBF@NLO</u> utility to calculate the \sqrt{s} of $VV \rightarrow VV$ process at which tree-level unitarity

• Calculated the energy at which the tree-level unitarity would be violated for our bounds in the

itarity bound (TeV) [5.5, 5.4][6.1, 6.5][6.7, 6.1][4.4, 4.4][4.0, 4.0][5.8, 6.0][6.1, 6.7][6.8, 7.0]

Does not violate unitarity

aQGC at Muon Collider

13/15

BSM Benchmark: Georgi-Machacek Model

Future steps: BSM interpretation with Georgi-Machacek model

- One real and one complex triplet
- Tree level H⁺ WZ coupling
- Presence of doubly charged Higgs: H⁺⁺

Easy to compare with LHC limits

Summary and Outlook

- Multiboson processes such as VBS is active area of study
 - Window to new physics
 - Very interesting at the lepton colliders
- We studied WW at a Muon collider with $\sqrt{s} = 6$ TeV
 - • $\sqrt{s} = 10$ TeV and 30 TeV is being studied
 - Beam induced background is ignored in this study
- •We are including a BSM interpretation to do a fair comparison with LHC results

COM Energy	125 GeV	1.5 TeV	3 TeV	6 TeV	10 TeV	14 TeV	30 TeV
Total Luminosity (ab-1)	0.020	0.25	1.0	4.0	10	10	10

Snowmass White paper

arXiv:2203.08135

Parameters for Snowmass physics studies at muon collider

Thank You

Elham E Khoda (UW)

BACKUP

Beam Induced Backgrounds

Large amount of beam induced backgrounds from muon decays Depends on beam energy and on the design of interaction region High occupancy in the first layers of detector tracking system->need to asses the detector performance

beam induced backgrounds

- Dedicated study at Snowmass on the performance of reconstructed objects in the presence of

Credit: N V Mokhov

Muon Collider: Conceptual Design

