EW Physics at the LHeC and FCC-he

D. Britzger for the LHeC and FCC Study Group Max-Planck-Institut für Physik München, Germany

Snowmass Community Summer Study Workshop University of Washington, Seattle 20.07.2022

Energy-frontier ep physics in the '30s – the LHeC

LHeC – ep data in 2030s

- ERL electron ring attached to HL-LHC
- Similar concept than FCC-eh but realisable much earlier
- $E_e = 50 \text{ GeV}, L \sim 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

LHeC

- √s ~ 1.2 TeV
- Electron and positron data
- Up to 1 ab-1 integrated luminosity
- (Symmetric) detector may be shared with ALICE3/HI
- Concurrent operation with *pp*-collisions at P1,P5,P8

→ *Relocatable*: ERL components can be relocated from HL-LHC to FCC-hh

C FCC-eh

Dedicated electron-ring attached to the FCC-hh

Energy recovery linac $E_e = 60 \text{ GeV}$ $\sqrt{s} \sim 3.5 \text{ TeV}$

High Luminosity of about 3 ab⁻¹

Concurrent operation with FCC-hh

Deep-inelastic scattering

DIS: Cleanest High Resolution Microscope

- → Extraordinary QCD laboratory
- \rightarrow Precision QCD and matter
- → QCD Discoveries

Empowering the HL-LHC & FCC-hh Search Programme

Transformation of HL-LHC & FCC-hh into the desired Higgs and discovery machine

Unique Facility for Nuclear Physics

Unique and complementary Higgs & Top-quark programme

Electroweak Physics

Electroweak physics in deep-inelastic scattering

Deep-inelastic electron-proton scattering mediated in spacelike regime, by γ , γZ , Z or W-boson exchange

Expectations: m_w + PDF

Determine W-boson mass together with proton-PDFs

The weak mixing angle

FCC LHA

Weak mixing angle

• $sin^2\theta_w$ in neutral-current vector couplings (only)

$$g_V^f = \sqrt{\rho_{\mathrm{NC},f}} \left(I_{\mathrm{L},f}^3 - 2Q_f \,\kappa_f \,\sin^2\theta_W \right)$$

 $sin^2\theta_W + PDF$ fit

- Comparison to Z-pole data
- At future DIS facilities: Most precise single measurement possible
- Note: need theory to map $\sin^2\theta_w$ to effective leptonic weak mixing angle

(Δsin ² θ _w (LHeC-50)	$= \pm 0.00021$
	Δsin²θ _w (LHeC-60)	$= \pm 0.00015$
	$\Delta sin^2 \theta_w$ (FCC-eh+LHeC)	$= \pm 0.00086$

STU parameters from inclusive DIS

S, T, U parameters are non-SM contributions to Z & W-boson self-energies

- Studied here: 2-parameter fits incl. PDF fit
- Scheme dependence: Modified on-shell (MOMS)
- With inclusive NC&CC DIS: Possible to disentangle S, T and U
 → Complementary to Z-pole

Scale dependent measurements

Running of $sin^2 \theta_w^{eff}$ the effective weak mixing angle is precisely measured at the Z-pole in e-e and p-p

New low-Q measurements will reach higher precision in the future

Scale dependence at high-Q is only poorly tested experimentally

With high luminosity e—p experiments Per mille uncertainties in range of 20 < Q < 700 GeV in spacelike regime

\rightarrow Unique measurement of the 'running' at high scales

H. Spiesberger.

Electroweak physics

Electroweak physics of 1st gen. quarks g_V and g_A of 1st gen. quarks ar largely inaccessible in other processes

→ PDFs are not a limiting factor for EW physics
 → Also the scale dependence ('running') can be tested with high precision

Weak couplings of the W-boson

DB, M. Klein, H. Spiesberger, Eur.Phys.J.C 80 (2020) 831 PoS(EPS-HEP2021)485

EW theory provides precise predictions for charged currents, but CC processes are poorly measured → neutrino escapes undetected

In DIS, the kinematics of charged currents are completely measured from final state and incoming electron

→ Weak couplings of the W-boson are precisely measured – even their scale dependence

LEP-1 and SLD: Z-pole average

CERN Yellow Reports: Monographs, 7/2019 ATL-PHYS-PUB-2018-037

The impact of LHeC on HL-LHC

W-mass measurements in pp

FCC

Major uncertainty from PDFs

ATLAS Simulation Preliminary

• Reduction of PDF uncertainty only feasible with LHeC PDFs $(\Delta m_W^{PDF} \sim 2MeV)$

- *HL-LHC–PDF* reduces uncertainty by 10-25%
- LHeC–PDFs reduces PDF uncertainties by an additional factor of 5

Direct W and Z production

Total cross sections: $e^-p \rightarrow W^+X$ $\sim O(14pb)$ $e^-p \rightarrow W^-X$ $\sim O(15pb)$ $e^-p \rightarrow ZX$ $\sim O(5pb)$

Direct W and Z production

W and Z-boson production through 5 production channels in electron-proton scattering Important VBF channels:

Sizeable (fiducial) cross section with leptonic decay

Process	$E_e = 50 \text{GeV}, E_p = 7 \text{TeV}$ $p_T^e > 10 \text{GeV}$	$\begin{aligned} E_e &= 60 \mathrm{GeV}, E_p = 7 \mathrm{TeV} \\ p_T^e &> 10 \mathrm{GeV} \end{aligned}$	$E_e = 60 \text{GeV}, E_p = 7 \text{TeV} \\ p_T^e > 5 \text{GeV}$
e^-W^+j	1.00 pb	1.18 pb	1.60 pb
e^-W^-j $ u_e^-W^-j$	$0.930\mathrm{pb}$ $0.796\mathrm{pb}$	$1.11{ m pb}$ $0.956{ m pb}$	$1.41\mathrm{pb}$ $0.956\mathrm{pb}$
$rac{ u_e^- Z j}{e^- Z j}$	$\begin{array}{c} 0.412\mathrm{pb}\\ 0.177\mathrm{pb} \end{array}$	$0.502\mathrm{pb}$ $0.204\mathrm{pb}$	$\begin{array}{c} 0.502\mathrm{pb}\\ 0.242\mathrm{pb}\end{array}$

With 1ab⁻¹ of LHeC data O(0.5 − 1.5 million events) → high sensitivity to aTGC

U. Baur, et al, Nucl. Phys. B 375 (1992) 3

R. Li, et al., PRD 97 (2018) 075043 LHeC, J.Phys.G 48 (2021) 110501

 \rightarrow Sensitivity to: $\Delta \kappa_{\gamma}$ and λ_{γ}

LHeC as a very unique, generic high energy yy collider

Wide spectrum of $\gamma\gamma$ processes will be studied at the LHeC

FCC

- γγ → γγ : orders of magnitude higher statistics than for PbPb at the HL-LHC + γγ tagging ⇒ kinematic fitting
- γγ → τ+τ-: orders of magnitude higher statistics than for PbPb at the HL-LHC + γγ tagging ⇒ new decay modes
- $\gamma\gamma \rightarrow Z$: search for the anomalous single Z boson exclusive production
- γγ → ZZ : possibility of first ever detection + stringent limits on anomalous quartic gauge couplings (aQGCs) using semi-leptonic decay modes, ZZ → I+I-jj
- γγ → W+W : measurements of semi-leptonic decay modes, W+W- → lv jj, will allow for a use of Optimal Observable methods (even with single γγ tagging) for probing aQGCs; yet high statistics (≈ as at the HL-LHC) is expected for fully leptonic W+W- decays + tagging

K. Piotrzkowski, Y. Yamazaki, in preparation

Higgs physics

Charged current

Neutral current

Higgs production through WW-fusion

Higgs production through ZZ-fusion

- Signal

CC qqq

CC top

CC Z

NC Z

160 180 200

m_{bb} [GeV]

PA bba

Higgs physics

U. Klein, M. Kumar, et al. LHeC JPhysG 48 (2021) 11050 S. Behera, B. Brickwedde, M. Schott [arXiv:2201.04037]

 $ep \rightarrow H + v + X \rightarrow bb + v + X$ Studies with full data-analyses of simulated data

Higgs-production cross section ~200fb Sensitivity to the decay channels bb, WW, gg, ττ, cc, ZZ, (γγ)

- \rightarrow simulations show great signal over background ratio
- \rightarrow symmetric detector is possible
- → Prospects validated with 'real' detector

Higgs physics – interpretation in κ framework

Signal strength in all decay channels

Interplay between *pp* and *ep* (shown here: LHeC & HL-LHC)

High sensitivity in all six decay channels \rightarrow Significant improvement with increasing \sqrt{s}

HWW and *HZZ* signal strengths measured at once in DIS via selection of the final state (e or v)

Complementarity between pp and ep

- ep: bb, WW, ZZ, cc
- pp: gg, тт, үү

LHeC with superior precision for $H \rightarrow ff$ and $H \rightarrow VV$

Future competition: ee, pp and/or ep

J. de Blas, JHEP01(2020)139

LHeC with high(est) constraints on

- $H \rightarrow ff$ (bb, Yukawa)
- $H \rightarrow VV$ (WW, EWSB)
- $H \rightarrow 2nd \text{ gen.} (cc)$

LHeC

- Complementary with HL-LHC
- Data in '30s
- 1/10 of the cost than FCC or ILC

Summary

LHeC & FCC-eh projects

- LHeC: 60 GeV electron times 7TeV proton (√s=1.3TeV),
- FCC-eh: 60 GeV electron times 50TeV proton (√s=3.5TeV),

Electroweak physics at LHeC & FCC-eh

- Fundamental EW parameters: Competitive with (HL-)LHC/LEP
- Complementary measurements to Z-pole data
- Unique measurements of scale dependence of EW interactions
- EW physics at HL-LHC needs LHeC-PDFs
- O(millions) directly produced W and Z-bosons \rightarrow aTGC
- Outstanding $\gamma\gamma$ collider prospects $\rightarrow aQGC$
- Extraordinary Higgs program
 - High precision to $H \rightarrow VV$ through HWW vertex
 - High precision to $H \rightarrow$ ff through Hbb vertex
 - → Feasibility studies with fast and full detector simulations

Update of LHeC-CDR JPhys.G 48 (2021) 110501

LHC-Point 2 in HL-LHC era

ALICE3

- HI physics
 - QGP, fluid expansion
 - Color-glass condensate
 - HQ transport, Thermalisation, Hadronisation

What may happen with a ~ 4-times better calibrated energy-scale from NC DIS in-situ calibration?

LHeC

FHC-Endo

FHC-P

DIS experiment at the HL-LHC EPJ C82 (2022) 40

• Higgs

Muon Detector

HAC-Barrel

BHC-Endcap

Dipole BHC-Plue

- EWK
- PDFs (for HL-LHC)

BEC-PI

- BSM
- Top
- small-x
- eA
- ALICE3 (pp, AA)

Deep-inelastic electron-proton scattering

C. Rubbia in 1992 CERN open council meeting when LHC was approved

FCC LH

$\delta m_{_W}$ with LHeC input

- m_W milestone measurements for consistency of SM and BSM searches
- Study of potential of m_w measurement with low pile-up runs

Large theory uncertainty originates from knowledge of PDFs Similar size than experimental uncertainties

At HL-LHC, PDFs are expected to become the largest indiviual uncertainty HL-LHC PDFs will reduce that, but will remain a limiting uncertainty With LHeC PDFs, the W-mass measurements will be exceed LEP precision

25

The Energy Recovery Linac – ERL

Energy-recovery linacs (ERL) → Well-proven accelerator concept

→ high-current & high-energy & multi-pass
 → optimised cavities & cryo-modules and a beam for collider experiments

PERLE at Orsay: ERL demonstrator facility for FCC-eh/LHeC needs 20mA, 802 MHz SRF, 3 turns → operation 2025+

 β -functions and beam-energy for 3-turn ERL

Concurrent eh & hh Operation

Two HL-LHC operation modes

- *hh* collisions at IP1,2,5,8 no e beam
- eh collisions at IP2 and hh at IP1, 5, 8
 → non-colliding p-beam: symmetric orbit bump & vert. crossing

Three beam interaction region

• LHC proton beam optics

Schematic view of the three beams at IP2

At IP2: same vertex for all interaction types (ep, eA, pp, AA) \rightarrow optional hh running with LHeC-detector.

Update of the LHeC CDR 2020

- Update of the CDR
- 373 pages about
 - Partonic structure of the proton
 - QCD studies, a_s , low-x, diffraction
 - Electroweak and top-quark physics
 - Nuclear physics
 - Higgs in DIS
 - BSM
 - Impact on the HL-LHC
 - Accelerator (Energy recovery linac)
 - PERLE facility
 - LHeC Detector

