

## Electroweak precision measurements at the ILC

## T. Suehara (Kyushu University)



on behalf of ILC IDT-WG3 Physics Potential and Opportunities subgroup based on arXiv:2203.07622 (ILC Snowmass white paper)

## eter Higgs factories and the ILC

## e<sup>+</sup>e<sup>-</sup> Higgs factory

- The next EF machine after HL-LHC in 2030-40s
- Solid physics cases (Higgs, BSM...)
- Powerful machine for EW precise measurements

## **Circular machine**

- FCCee, CEPC
- Upgrade path to hadron colliders
- More luminosity in **Z-pole and WW**
- Multiple detectors • (like LHC)
- Feasibility studies in Europe until ~2025
- ~100 km tunnel

## Linear machine

- ILC, CLIC, C<sup>3</sup> etc.
- Upgrade path to TeV e<sup>+</sup>e<sup>-</sup> colliders
- More luminosity in higher energy
- Polarization

•

- Long development technically mature < 20 km tunnel •

## ILC in Japan

- Pity not concrete statement yet (Still) the earliest machine possible to be realized
- Restructuring of strategy ongoing (expect first feedback this year)
- Construction start aimed at (late) 2020s  $\rightarrow$  operation in 2030s
- Support from US (and Europe) mandatory (the concern of MEXT)





## EW precise measurements at Higgs Factories

 Electroweak precision observables (EWPOs): • Direct probe for new physics (eg. Z' bosons) Collision energy is important Triple/quartic coupling of gauge bosons Better for higher energies Important inputs for SM Effective Field Theory

LEP results still alive  $\rightarrow$  supreme channels for lepton colliders - 1-2 order-of-magnitude improvement foreseen with Higgs Factories

# Essential for model-independent NP search with EW/Higgs sectors









- $e^+e^- \rightarrow 2f$  measurements – Radiative return at 250 GeV - Z-pole (Giga-Z) - 2f at 250/500/1000 GeV Sensitivity to Z' models Sensitivity to indirect DM search
- Triple gauge couplings
- W mass measurements (Z mass/width: the next talk)
- Applying to Higgs analysis (SMEFT)
- Summary

## Topics



## Radiative Return at 250 GeV, 2 ab<sup>-1</sup>



arXiv:2203.07944 **ILD** full simulation

| (-0.8, +0.3) p         | olarizatio | on, assuming $\int I$ | Ldt = 900 | ) fb <sup><math>-1</math></sup> . | 27         | PD      | 0 |
|------------------------|------------|-----------------------|-----------|-----------------------------------|------------|---------|---|
| $\times 10^{6}$ events | Signal     | Signal (Core)         | 2f_l      | 4 <b>f</b> ⊥                      | $4 f_{sl}$ | 4f_h    |   |
| Expected               | 46.0       | 32.5                  | 12.7      | 9.34                              | 17.2       | 15.1    |   |
| $\operatorname{Cut}1$  | 32.7       | 31.1                  | 10.1      | 5.96                              | 16.0       | 14.8    |   |
| $\operatorname{Cut}2$  | 24.6       | 24.4                  | 2.55      | 1.46                              | 3.22       | 0.00422 |   |
| $\operatorname{Cut}3$  | 24.5       | 24.4                  | 1.93      | 0.366                             | 0.526      | 0.00352 |   |
| Cut 4                  | 24.4       | 24.3                  | 0.299     | 0.0574                            | 0.523      | 0.00352 |   |
| $\operatorname{Cut}5$  | 24.3       | 24.2                  | 0.0651    | 0.0102                            | 0.520      | 0.00352 |   |
| Cut 6                  | 24.2       | 24.2                  | 0.0571    | 0.00807                           | 0.470      | 0.00210 |   |
| Cut 7                  | 24.2       | 24.1                  | 0.0534    | 0.00647                           | 0.463      | 0.00204 |   |
|                        |            |                       |           |                                   |            |         |   |

24 M events after selection with  $e_1 p_R$ (16 M with  $e_R p_I$ ), negligible bkg.

## $A_{LR} = 0.22810 \pm 0.00018$ (stat) total error on $A_{LR}$ is $2.5 \times 10^{-4}$

Including pol. error and other systematics Stat. error and syst. error comparable

Analysis fully utilizing polarization

T. Suehara, Seattle Snowmass Summer Meeting, 20 Jul. 2022 page 5

### nly









## Radiative Return: other variables

| Quantity               | Value   | current           | ILC                      | 250                     |
|------------------------|---------|-------------------|--------------------------|-------------------------|
|                        |         | $\delta[10^{-4}]$ | $\delta_{stat}[10^{-4}]$ | $\delta_{sys}[10^{-4}]$ |
| boson properties       |         |                   |                          |                         |
| $m_W$                  | 80.379  | 1.5               |                          | 0.3                     |
| $m_Z$                  | 91.1876 | 0.23              | 0.08                     | -                       |
| $\Gamma_Z$             | 2.4952  | 9.4               | 6                        | -                       |
| $\Gamma_Z(had)$        | 1.7444  | 11.5              | -                        | -                       |
| Z-e couplings          |         |                   |                          |                         |
| $1/R_e$                | 0.0482  | 24.               | 5.5                      | 10                      |
| $A_e$                  | 0.1513  | 139.              | 12.                      | 16.                     |
| $g^e_L$                | -0.632  | 16.               | 2.8                      | 7.6                     |
| $g^e_R$                | 0.551   | 18.               | 2.9                      | 7.6                     |
| $Z$ - $\ell$ couplings |         |                   |                          |                         |
| $1/R_{\mu}$            | 0.0482  | 16.               | 5.5                      | 10                      |
| $1/R_{	au}$            | 0.0482  | 22.               | 5.7                      | 10                      |
| $A_{\mu}$              | 0.1515  | 991.              | 54.                      | 3.                      |
| $A_{	au}$              | 0.1515  | 271.              | 57.                      | 3                       |
| $g^{\mu}_L$            | -0.632  | 66.               | 4.5                      | 7.6                     |
| $g^{\mu}_R$            | 0.551   | 89.               | 5.5                      | 7.6                     |
| $g_L^{	au}$            | -0.632  | 22.               | 4.7                      | 7.6                     |
| $g_R^{	au}$            | 0.551   | 27.               | 5.8                      | 7.6                     |
| Z- $b$ couplings       |         |                   |                          |                         |
| $R_b$                  | 0.2163  | 31.               | 3.5                      | 10                      |
| $A_b$                  | 0.935   | 214.              | 5.7                      | 3                       |
| $g_L^b$                | -0.999  | 54.               | 2.2                      | 7.6                     |
| $g^b_R$                | 0.184   | 1540              | 41.                      | 23.                     |
| Z-c couplings          |         |                   | -                        |                         |
| $R_c$                  | 0.1721  | 174.              | 5.8                      | 50                      |
| $A_c$                  | 0.668   | 404.              | 21.                      | 3                       |
| $g_L^c$                | 0.816   | 119.              | 5.1                      | 26.                     |
| $g_R^{\widetilde{c}}$  | -0.367  | 416.              | 21.                      | 26.                     |

 $\delta m_7$  (0.7 MeV): Using Z  $\rightarrow \mu\mu$  only (if including  $Z \rightarrow qq$  statistical power 0.2-0.3 MeV, but jet energy scaling should be an issue)

 $A_f$  (f =  $\mu$ ,  $\tau$ , b, c): from  $A_{LRFB}$  (no simulation done yet) Estimating (flavor/charge) tagging efficiencies from full-simulation studies of 250/500 GeV 2f (τ: 80%, μ: 88%, b: 40%, c: 7.3%).  $g_{IR}$ : calculated from  $A_f$ 

### R<sub>q</sub> $\equiv \Gamma(Z \to q\bar{q})/\Gamma(Z \to \text{hadrons})$ and $1/R_{\ell} \equiv \Gamma(Z \to \ell^+ \ell^-)/\Gamma(Z \to \text{hadrons})$

Same as above but do not need charge tagging (efficiency on quarks much better)

 $\Gamma_7$ : calculated from  $R_f$ Can be improved by line shape (by some factor)







## Z-pole run (Giga-Z)

| Quantity             | Value   | current           | Zp                       | ole                     |   |
|----------------------|---------|-------------------|--------------------------|-------------------------|---|
|                      |         | $\delta[10^{-4}]$ | $\delta_{stat}[10^{-4}]$ | $\delta_{sys}[10^{-4}]$ |   |
| boson properties     |         |                   |                          |                         |   |
| $m_W$                | 80.379  | 1.5               | _                        | -                       |   |
| $m_Z$                | 91.1876 | 0.23              |                          | 0.022                   |   |
| $\Gamma_Z$           | 2.4952  | 9.4               | 0.5                      | -                       | = |
| $\Gamma_Z(had)$      | 1.7444  | 11.5              |                          | 4.                      |   |
| Z-e couplings        |         |                   |                          |                         |   |
| $1/R_e$              | 0.0482  | 24.               | 2.                       | 5                       |   |
| $A_e$                | 0.1513  | 139.              | 2.8                      | 5.                      |   |
| $g^e_L$              | -0.632  | 16.               | 1.0                      | 3.2                     |   |
| $g^e_R$              | 0.551   | 18.               | 1.0                      | 3.2                     |   |
| $Z - \ell$ couplings |         |                   |                          |                         |   |
| $1/R_{\mu}$          | 0.0482  | 16.               | 2.                       | 2.                      |   |
| $1/R_{	au}$          | 0.0482  | 22.               | 2.                       | 2.                      |   |
| $A_{\mu}$            | 0.1515  | 991.              | 2.                       | 5                       |   |
| $A_{	au}$            | 0.1515  | 271.              | 2.                       | 5.                      |   |
| $g^{\mu}_L$          | -0.632  | 66.               | 1.0                      | 2.3                     |   |
| $g^{\mu}_R$          | 0.551   | 89.               | 1.0                      | 2.3                     |   |
| $g_L^{	au}$          | -0.632  | 22.               | 1.0                      | 2.8                     |   |
| $g_R^{	au}$          | 0.551   | 27.               | 1.0                      | 3.2                     |   |
| Z- $b$ couplings     |         |                   |                          |                         |   |
| $R_b$                | 0.2163  | 31.               | 0.4                      | 7.                      |   |
| $A_b$                | 0.935   | 214.              | 1.                       | 5.                      |   |
| $g_L^b$              | -0.999  | 54.               | 0.32                     | 4.2                     |   |
| $g_R^b$              | 0.184   | 1540              | 7.2                      | 36.                     |   |
| Z-c couplings        |         | -                 | -                        |                         |   |
| R <sub>c</sub>       | 0.1721  | 174.              | 2.                       | 30                      |   |
| $\overline{A_c}$     | 0.668   | 404.              | 3.                       | 5                       |   |
| $g_L^c$              | 0.816   | 119.              | 1.2                      | 15.                     |   |
| $g_R^c$              | -0.367  | 416.              | 3.1                      | 17.                     |   |

luminosity [fb<sup>-1</sup>]  $\sigma(P_{e^-}, P_{e^+})$  [nb] Z events  $[10^9]$ hadronic Z events

0.1  $ab^{-1}$  assumed (~1.5 years run) ~50 times more Zs than 250 GeV Electron polarization maintained Positron may not be polarized (depending on positron production method)

### Number of Zs and luminosity

|          | si    |        |        |        |                      |
|----------|-------|--------|--------|--------|----------------------|
|          | (-,+) | (+, -) | (-, -) | (+, +) | $\operatorname{sum}$ |
|          | 40    | 40     | 10     | 10     |                      |
|          | 60.4  | 46.1   | 35.9   | 29.4   |                      |
|          | 2.4   | 1.8    | 0.36   | 0.29   | 4.9                  |
| $[10^9]$ | 1.7   | 1.3    | 0.25   | 0.21   | 3.4                  |



No serious simulation studies done Mostly dominated by systematic uncertainty of polarization uncertainty (~0.1%)



Probe for high energy particles (Z', WIMP,...)





Gives difference in  $\sigma$  and angular/polarization dependence  $\rightarrow$  precise measurement to 0.1% possible

| Sqrt(s)            | Process                             | N (e⁻ <sub>L</sub> e⁺ <sub>R</sub> ) | N (e⁻ <sub>R</sub> e⁺ <sub>L</sub> )                           |
|--------------------|-------------------------------------|--------------------------------------|----------------------------------------------------------------|
| 250 GeV,           | e⁺e⁻ → qq                           | 43 M                                 | 27 M                                                           |
| 2 ab-'             | $e^+e^- \rightarrow II (\mu, \tau)$ | 7.2 M                                | 5.7 M                                                          |
| 500 GeV,           | $e^+e^- \rightarrow dd$             | 18 M                                 | 10 M                                                           |
| 4 ab-'             | e⁺e⁻ → II (μ, τ)                    | 4.2 M                                | N (e Re'L)<br>27 M<br>5.7 M<br>10 M<br>3.1 M<br>6.1 M<br>1.7 M |
| 1 TeV,             | e⁺e⁻ → qq                           | 10 M                                 | 6.1 M                                                          |
| 8 ab <sup>-1</sup> | e⁺e⁻ → II (μ, τ)                    | 2.4 M                                | 1.7 M                                                          |

Measurement with < 0.1% possible

### Study of charge assignment of $e^+e^- \rightarrow bb$

![](_page_7_Picture_9.jpeg)

![](_page_7_Picture_10.jpeg)

![](_page_7_Picture_11.jpeg)

## 2f study: limits to Z' and WIMPs

![](_page_8_Figure_1.jpeg)

### Angular distributions are checked to obtain significance

| Table 5: | Mass reach of EWIMP            |
|----------|--------------------------------|
| BSM      | mass reach $(90\% \text{ CL})$ |
| MDM      | 500  GeV                       |
| Higgsino | 180  GeV                       |
| Wino     | $240  \mathrm{GeV}$            |

Mass reach of WIMPs at 250 GeV: to be updated

![](_page_8_Figure_7.jpeg)

|        | 250 GeV | $V, 2 \text{ ab}^{-1}$ | 500 Ge | $eV, 4 ab^{-1}$ | $1 { m TeV}$ | $7, 8 \text{ ab}^{-1}$ |
|--------|---------|------------------------|--------|-----------------|--------------|------------------------|
| Model  | excl.   | disc.                  | excl.  | disc.           | excl.        | disc.                  |
| SSM    | 7.7     | 4.9                    | 13     | 8.3             | 22           | 14                     |
| ALR    | 9.4     | 5.9                    | 16     | 10              | 25           | 18                     |
| $\chi$ | 7.0     | 4.4                    | 12     | 7.7             | 21           | 13                     |
| $\psi$ | 3.7     | 2.3                    | 6.3    | 4.0             | 11           | 6.7                    |
| $\eta$ | 4.1     | 2.6                    | 7.2    | 4.6             | 12           | 7.8                    |

Table 10.1: Projected limits on Z' bosons in standard models, from the study of  $e^+e^- \to ff$ . The values presented, given in TeV, are the 95% exclusion limits and the 5 $\sigma$  discovery limits for the successive stages of the ILC program up to 1 TeV.

## Limit for Z' models in TeV: SSM, ALR (alternative left-right model) and $E_6$ models

Z' in GHU (Gauge Higgs Unification) model (arXiv:1705.05282,1801.04671) Big deviation with  $e_{R}p_{I}$  polarization: easy to identify deviation with 250 GeV linear colliders

![](_page_8_Picture_13.jpeg)

![](_page_8_Picture_14.jpeg)

![](_page_8_Picture_15.jpeg)

![](_page_8_Picture_16.jpeg)

## Triple gauge couplings at 250- GeV

Table 1: List of processes used in the fitting framework, including the considered values of chiral chross-sections and the differential distributions with corresponding binning. A starred observable (\*) is extracted in the rest frame of the corresponding W boson. (q = u, d, s, c, b)Cross sections where calculated with WHIZARD [7] and are supplied by the ILD generator group [8].

| Process                                     | $\sigma_{LR}$        | $\sigma_{RL}$        | $\sigma_{LL}$        | $\sigma_{RR}$        | Diff. observ          |                                        |                    |
|---------------------------------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|----------------------------------------|--------------------|
| $(e^+e^- \to X)$                            | $[\mathrm{fb}^{-1}]$ | $[\mathrm{fb}^{-1}]$ | $[\mathrm{fb}^{-1}]$ | $[\mathrm{fb}^{-1}]$ | # Bins                |                                        |                    |
| $W^+W^- \rightarrow \mu\nu q\bar{q}'$       | 9390                 | 86.4                 | 0                    | 0                    | $\cos(\theta_{W^-}),$ | $\cos\left( \theta_{\mu}^{*} \right),$ | $\phi_l^*$         |
|                                             |                      |                      |                      |                      | $20 \otimes$          | $10 \otimes$                           | 10                 |
| $W^+e^-\bar{\nu} \to q\bar{q}'e^-\bar{\nu}$ | 5000                 | 42.8                 | 0                    | 119                  | $\cos(\theta_{W^+}),$ | $\cos\left(\theta_{e^{-}}^{*}\right),$ | $m_{e^-\bar{ u}}$  |
|                                             |                      |                      |                      |                      | $20 \otimes$          | $10 \otimes$                           | 20                 |
| $W^-e^+\nu \to q\bar{q}'e^+\nu$             | 500                  | 42.9                 | 120                  | 0                    | $\cos(\theta_{W^-}),$ | $\cos\left(\theta_{e^{+}}^{*}\right),$ | $m_{e^+\bar{\nu}}$ |
|                                             |                      |                      |                      |                      | $20 \otimes$          | $10 \otimes$                           | 20                 |
| $ZZ \rightarrow q\bar{q}\mu^+\mu^-$         | 356                  | 178                  | 0                    | 0                    | $\theta_Z^l$ ,        | $\theta^*_{\mu^-}$ ,                   | $\phi^*_{\mu^-}$   |
|                                             |                      |                      |                      |                      | $20 \otimes$          | $10 \otimes$                           | 10                 |
| $q\bar{q}$                                  | 12900                | 71300                | 0                    | 0                    | $\theta_q$            |                                        |                    |
|                                             |                      |                      |                      |                      | 20                    |                                        |                    |
| $l^+l^-(l=\mu/\tau)$                        | 21200                | 16500                | 0                    | 0                    | $\theta_{l}$          |                                        |                    |
|                                             |                      |                      |                      |                      | 20                    |                                        |                    |

### Higher energy: significant improvement

|                           | $250  {\rm GeV}$ | $350  {\rm GeV}$ | $500  {\rm GeV}$ | $1000 { m ~GeV}$ |
|---------------------------|------------------|------------------|------------------|------------------|
|                           | $W^+W^-$         | $W^+W^-$         | $W^+W^-$         | $W^+W^-$         |
| $g_{1Z}$                  | 0.062            | 0.033            | 0.025            | 0.0088           |
| $\kappa_A$                | 0.096            | 0.049            | 0.034            | 0.011            |
| $\lambda_A$               | 0.077            | 0.047            | 0.037            | 0.0090           |
| $\rho(g_{1Z},\kappa_A)$   | 63.4             | 63.4             | 63.4             | 63.4             |
| $\rho(g_{1Z}, \lambda_A)$ | 47.7             | 47.7             | 47.7             | 47.7             |
| $ ho(\kappa_A,\lambda_A)$ | 35.4             | 35.4             | 35.4             | 35.4             |

Table 13: Projected statistical errors, in %, for  $e^+e^- \rightarrow W^+W^-$  measurements input to our fits. The errors are quoted for luminosity samples of 500  $\text{fb}^{-1}$  divided equally between beams with -80% electron polarisation and +30% positron polarisation and brams with +80% electron polarisation and -30% positron polarisation. Please see the text of Appendix B for further explanation of this table.

![](_page_9_Figure_7.jpeg)

### Result on constrained TGCs (LEP constraint $\sim 10^{-2}$ )

(Electron) polarization is important in the TGC

T. Suehara, Seattle Snowmass Summer Meeting, 20 Jul. 2022 page 10

![](_page_9_Picture_11.jpeg)

arXiv:2002.02777

![](_page_9_Picture_21.jpeg)

## W mass measurement

Methods to measure W mass with ILC:

- 1. Constrained reconstruction (kinematic constraints with W+W-)
- 2. Hadronic mass (single W or semileptonic W-pair)
- 3. Lepton endpoints
- Dilepton pseudomass 4.
- 5. Polarized threshold scan (at WW threshold)

![](_page_10_Figure_7.jpeg)

Hadronic mass at 500 GeV

| $\Delta M_W$ [MeV]               | LEP2      | ILC  | ILC  | ILC  |
|----------------------------------|-----------|------|------|------|
| $\sqrt{s}  [\text{GeV}]$         | 172 - 209 | 250  | 350  | 500  |
| $\mathcal{L} \; [	ext{fb}^{-1}]$ | 3.0       | 2000 | 200  | 4000 |
| $P(e^{-})$ [%]                   | 0         | 80   | 80   | 80   |
| $P(e^{+})$ [%]                   | 0         | 30   | 30   | 30   |
| beam energy                      | 9         | 0.4  | 0.55 | 0.8  |
| $luminosity \ spectrum$          | N/A       | 1.0  | 1.4  | 2.0  |
| hadronization                    | 13        | 1.3  | 1.3  | 1.3  |
| radiative corrections            | 8         | 1.2  | 1.5  | 1.8  |
| detector effects                 | 10        | 1.0  | 1.0  | 1.0  |
| other systematics                | 3         | 0.3  | 0.3  | 0.3  |
| total systematics                | 21        | 2.3  | 2.7  | 3.3  |
| statistical                      | 30        | 0.75 | 2.8  | 0.9  |
| total                            | 36        | 2.4  | 3.9  | 3.4  |

### Numbers with method 1. 2 MeV precision should be in reach

### Lepton endpoints and dilepton pseudomass at 250 GeV T. Suehara, Seattle Snowmass Summer Meeting, 20 Jul. 2022 page 11

![](_page_10_Picture_14.jpeg)

![](_page_10_Picture_15.jpeg)

![](_page_10_Picture_16.jpeg)

![](_page_10_Picture_24.jpeg)

## Comparisons

| Quantity                                      | current    | ILC250   | ILC-GigaZ | FCC-ee             | CEPC             | CLIC380   |
|-----------------------------------------------|------------|----------|-----------|--------------------|------------------|-----------|
| $\Delta \alpha(m_Z)^{-1}$ (×10 <sup>3</sup> ) | 17.8*      | 17.8*    |           | 3.8(1.2)           | 17.8*            |           |
| $\Delta m_W ~({\rm MeV})$                     | $12^{*}$   | 0.5(2.4) |           | 0.25(0.3)          | 0.35(0.3)        |           |
| $\Delta m_Z \ ({\rm MeV})$                    | $2.1^{*}$  | 0.7(0.2) | 0.2       | 0.004(0.1)         | 0.005(0.1)       | $2.1^{*}$ |
| $\Delta m_H \ ({\rm MeV})$                    | $170^{*}$  | 14       |           | 2.5(2)             | 5.9              | 78        |
| $\Delta \Gamma_W (MeV)$                       | $42^{*}$   | 2        |           | 1.2(0.3)           | 1.8(0.9)         |           |
| $\Delta\Gamma_Z \ (MeV)$                      | $2.3^{*}$  | 1.5(0.2) | 0.12      | $0.004 \ (0.025)$  | $0.005\ (0.025)$ | $2.3^{*}$ |
| $\overline{\Delta A_e} (\times 10^5)$         | 190*       | 14 (4.5) | 1.5 (8)   | 0.7(2)             | 1.5(2)           | 64        |
| $\Delta A_{\mu} \ (\times 10^5)$              | $1500^{*}$ | 82(4.5)  | 3(8)      | 2.3(2.2)           | 3.0(1.8)         | 400       |
| $\Delta A_{\tau} (\times 10^5)$               | $400^{*}$  | 86(4.5)  | 3(8)      | 0.5(20)            | 1.2(20)          | 570       |
| $\Delta A_b \ (\times 10^5)$                  | $2000^{*}$ | 53(35)   | 9(50)     | 2.4(21)            | 3(21)            | 380       |
| $\Delta A_c \ (\times 10^5)$                  | $2700^{*}$ | 140(25)  | 20(37)    | 20(15)             | 6(30)            | 200       |
| $\Delta \sigma_{\rm had}^0 ~({\rm pb})$       | 37*        | +        |           | 0.035(4)           | 0.05 (2)         | 37*       |
| $\delta R_e \ (\times 10^3)$                  | $2.4^{*}$  | 0.5(1.0) | 0.2(0.5)  | 0.004~(0.3)        | 0.003(0.2)       | 2.7       |
| $\delta R_{\mu} \ (\times 10^3)$              | $1.6^{*}$  | 0.5(1.0) | 0.2(0.2)  | 0.003 (0.05)       | 0.003(0.1)       | 2.7       |
| $\delta R_{\tau} ~(\times 10^3)$              | $2.2^{*}$  | 0.6(1.0) | 0.2(0.4)  | 0.003(0.1)         | 0.003(0.1)       | 6         |
| $\delta R_b \; (\times 10^3)$                 | $3.1^{*}$  | 0.4(1.0) | 0.04(0.7) | $0.0014 \ (< 0.3)$ | 0.005 (0.2)      | 1.8       |
| $\delta R_c(	imes 10^3)$                      | $17^{*}$   | 0.6(5.0) | 0.2(3.0)  | 0.015~(1.5)        | 0.02(1)          | 5.6       |
|                                               |            |          |           |                    |                  |           |

Table 3: EWPOs at future  $e^+e^-$ : statistical error (estimated experimental systematic error).  $\Delta(\delta)$  stands for absolute (relative) uncertainty, while \* indicates inputs taken from current data [1]. See Refs. [17, 24, 26, 27, 36, 37].

Snowmass electroweak summary for EWPOs

No easy comparison: just take order-of-magnitude difference Circular collider has much higher luminosity at < 250 GeV Polarization partially compensates difference of luminosity Mostly dominated by systematics - effect of too much luminosity is rather limited TGC/VBS better in higher energy LC would give better numbers

(but ~ $10^{-3}$  with 250 GeV for TGC) Input to SMEFT with Higgs ightarrowmeasurements

![](_page_11_Picture_9.jpeg)

![](_page_11_Picture_10.jpeg)

![](_page_11_Picture_11.jpeg)

![](_page_11_Picture_12.jpeg)

![](_page_11_Picture_13.jpeg)

![](_page_11_Picture_14.jpeg)

![](_page_11_Picture_15.jpeg)

![](_page_11_Picture_16.jpeg)

## SM Effective Field Theory fits

### Assumed SMEFT Lagrangian (22 params)

 $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_H + \mathcal{L}_{W,B} + \mathcal{L}_{\Phi\ell} + \mathcal{L}_{\Phi q} + \mathcal{L}_{\Phi f} + \mathcal{L}_{g}$ 

### Anomalous Higgs-fermion/gluon couplings

![](_page_12_Figure_4.jpeg)

### SMEFT results for Higgs couplings

 $\mathcal{L}_H = \frac{c_H}{2v^2} (\partial_\mu \Phi^\dagger \Phi)^2 + \frac{c_T}{2v^2} (\Phi^\dagger \overleftrightarrow{D}^\mu \Phi) (\Phi^\dagger \overleftrightarrow{D}_\mu \Phi) - \frac{\lambda c_6}{v^2} (\Phi^\dagger \Phi)^3$  $\mathcal{L}_{W,B} = \frac{g^2 c_{WW}}{v^2} (\Phi^{\dagger} \Phi) W^a_{\mu\nu} W^{a\mu\nu} + \frac{2gg' c_{WB}}{v^2} (\Phi^{\dagger} t^a \Phi) W^a_{\mu\nu} B^{\mu\nu}$  $+\frac{g'^2 c_{BB}}{v^2} (\Phi^{\dagger} \Phi) B_{\mu\nu} B^{\mu\nu} + \frac{c_{3W}}{6v^2} \epsilon_{abc} W^{a\nu}_{\mu} W^{b\rho}_{\nu} W^{c\mu}_{\rho} .$ 

|                 | ILC250                                  |                        |       | ILC500                                  |                        |       |  |
|-----------------|-----------------------------------------|------------------------|-------|-----------------------------------------|------------------------|-------|--|
| coupling        | $\operatorname{Rad}\operatorname{Rtrn}$ | $\operatorname{GigaZ}$ | TeraZ | $\operatorname{Rad}\operatorname{Rtrn}$ | $\operatorname{GigaZ}$ | TeraZ |  |
| hZZ             | 0.38                                    | 0.35                   | 0.30  | 0.20                                    | 0.20                   | 0.19  |  |
| hWW             | 0.38                                    | 0.35                   | 0.31  | 0.20                                    | 0.20                   | 0.19  |  |
| hbb             | 0.80                                    | 0.78                   | 0.77  | 0.43                                    | 0.43                   | 0.43  |  |
| h	au	au         | 0.95                                    | 0.94                   | 0.92  | 0.63                                    | 0.63                   | 0.63  |  |
| hgg             | 1.6                                     | 1.6                    | 1.6   | 0.91                                    | 0.91                   | 0.91  |  |
| hcc             | 1.7                                     | 1.7                    | 1.7   | 1.1                                     | 1.1                    | 1.1   |  |
| $h\gamma\gamma$ | 1.0                                     | 1.0                    | 1.0   | 0.96                                    | 0.96                   | 0.96  |  |
| $h\gamma Z$     | 8.9                                     | 8.5                    | 7.9   | 6.5                                     | 6.4                    | 5.8   |  |
| $h\mu\mu$       | 4.0                                     | 3.9                    | 3.9   | 3.7                                     | 3.7                    | 3.7   |  |
| $\Gamma_{tot}$  | 1.29                                    | 1.26                   | 1.21  | 0.70                                    | 0.70                   | 0.69  |  |

### Effect of EWPOs for Higgs couplings

![](_page_12_Picture_10.jpeg)

![](_page_12_Picture_21.jpeg)

• Electroweak measurements are one of the important programs in Higgs factories Necessary for SMEFT – eventually for Higgs precision – W mass puzzle can be cleared 1-2 order-of-magnitude improvement from LEP expected Circular collider better for EWPOs, LC upgrade for TGC/VBS Systematics important in most of variables Need more detailed investigation Some study including full detector simulation exists - But not fully covered yet, a lot of work still needed

## Summary

![](_page_13_Picture_18.jpeg)

![](_page_13_Picture_35.jpeg)