Measuring the tau polarisation at ILC

Keita Yumino, Daniel Jeans

KEK, SOKENDAI
yumino@post.kek.jp

Motivation

At the ILC, forward-backward asymmetry $A_{F B}=\frac{3}{4} A_{e} \cdot A_{f}$ can be measured Thanks to ILC's polarised beams, A_{e} can be measured $\Rightarrow A_{f}$ can be extracted from A_{FB}

By measuring A_{FB} precisely and looking for deviations from SM predictions, it is possible to search for new physics, such as heavy gauge boson Z^{\prime}

We can also directly measure A_{τ} by using tau polarisation $P(\tau)$

$$
\frac{d P(\tau)}{d \cos \theta}=\frac{3}{8} A_{\tau}\left(1+\cos ^{2} \theta\right)+\frac{3}{4} A_{e} \cos \theta
$$

[The aim of this study The reconstruction of tau spin orientation ("Polarimeter") in order to measure polarisation to investigate new physics.

Polarimeter

Reconstruction of tau polarisation $P(\tau)$ depends on tau decay mode.
Polarimeter vectors of $\tau \rightarrow \pi \nu$ in τ rest frame

$$
h\left(\tau^{ \pm} \rightarrow \pi^{ \pm} \nu\right) \propto p_{\pi^{ \pm}}
$$

Polarimeter vectors of $\tau \rightarrow \rho \nu$ in τ rest frame

$$
h\left(\tau^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} \nu\right) \propto m_{\tau}\left(E_{\pi^{ \pm}}-E_{\pi^{0}}\right)\left(p_{\pi^{ \pm}}-p_{\pi^{0}}\right)+\frac{1}{2}\left(p_{\pi^{ \pm}}+p_{\pi^{0}}\right)^{2} p_{\nu}
$$

"Polarimeter"

The cosine of the angle this polarimeter vector makes to the tau flight direction

Previous study

Extract polarimeter without using neutrino information
"Approximate" polarimeters based only on the momenta of visible tau decay products "Optimal" polarimeters including the neutrino component

mean statistical error on tau polarisation
$\left(E_{\mathrm{CM}}=500 \mathrm{GeV}, \mathscr{L}=1.6 \mathrm{ab}^{-1}\right) \quad 0.30 \%$

0.40%

In this talk: reconstruct neutrino momentum \rightarrow optimal polarimeters

Simulation setup

- Signal event sample with $100 \% e_{L}^{-} e_{R}^{+}$beam polarisations were generated using WHIZARD ver 2.8.5.
- The decay of the polarised tau was done using TAUOLA.
- MC truth information was used.
currently
- only look at

$$
\begin{aligned}
& \tau \rightarrow \pi \nu(\mathrm{BR} \sim 10 \%) \\
& \tau \rightarrow \rho \nu(\mathrm{BR} \sim 26 \%)
\end{aligned}
$$

τ reconstruction method

τ reconstruction method

- Two tau momenta lie in a plane containing z-axis, at some azimuthal angle ϕ

τ reconstruction method

For a plane with azimuthal angle ϕ, the intersection of trajectories with this plane can be calculated.

τ reconstruction method

then choice of $z_{\text {IP }}$ gives direction of tau momenta

τ reconstruction method

Constraints

- 4-momentum conservation
- tau mass $\times 2$
- Decay point on trajectory $\times 2$
assume 1 ISR photon collinear with beam and each other

For choice of $z_{I P}, \phi$
we can calculate tau 4-momenta P_{τ}
the invariant mass of the missing (neutrino) momentum for each tau can be calculated

$$
P_{\nu}=P_{\tau}-P_{v i s}
$$

We choose the values of z and ϕ which result in neutrino masses closest to zero

Find solutions

We choose the values of z and ϕ which result in neutrino masses closest to zero example event with 1 solution

find local minima in $\sum\left|m_{\nu_{i}}^{2}\right|$

Find solutions

We choose the values of z and ϕ which result in neutrino masses closest to zero example event with 2 solutions

Find solutions

We choose the values of z and ϕ which result in neutrino masses closest to zero example event with 3 solutions

Find solutions

We choose the values of z and ϕ which result in neutrino masses closest to zero example event with 4 solutions

Method efficiency

Method worked : at least 1 solution is found

Impact parameter method efficiency is $>80 \%$ for events with $m_{\tau \tau} \sim 250 \mathrm{GeV}$

Comparison with MC

Reconstructed $m_{\tau \tau}$ based on Impact parameter method solutions

Reasonable agreement between MC and reconstructed $m_{\tau \tau}$

Polarimeter

Polarimeter using reconstructed ν is in reasonable agreement with MC one.

Summary

- Full reconstruction of $e^{+} e^{-} \rightarrow \tau^{+} \tau^{-}$using impact parameter was investigated.
- For events with $m_{\tau \tau} \sim 250 \mathrm{GeV}$, impact parameter method efficiency is $>80 \%$.

$$
m_{\tau \tau} \sim 91 \mathrm{GeV} \quad \sim 70 \%
$$

- Polarimeters were reconstructed in the $\tau \rightarrow \pi \nu$ and $\tau \rightarrow \rho \nu$ decay modes.
- Reasonable agreement between MC truth polarimeter and the one from "Impact parameter method" for both $\tau \rightarrow \pi \nu$ and $\tau \rightarrow \rho \nu$ decay were found.

Future plan

- Understand the structure of the method's efficiency around the Z peak.
- Investigate the effect of full detector simulation and reconstruction.
- Quantify the precision with which the tau polarisation can be measured at ILC-250.
- Investigate search for new physics by using the tau polarisation.

International Linear Collider (ILC)

linear electron-positron collider

The aim of ILC experiment

- Precision measurement of the Higgs boson and top quark
- Discovery of physics beyond the Standard Model
-search for candidates for dark matter

The transverse momenta p_{T} of the two taus are assumed to be equal to conserve the event's transverse momentum. The magnitudes of the total tau momenta are then given by $p_{i}=p_{T} / \sin \theta_{i}$, and the z momenta by $p_{z, i}=p_{T} / \tan \theta_{i}$.

Conservation of energy gives $E_{\tau, 1}+E_{\tau, 2}+E_{I S R}=E_{C M}$, where $E_{\tau, 1(2)}$ is the energy of tau $1(2), E_{I S R}$ the energy carried by ISR photons, and $E_{C M}$ the centre-of-mass energy. If we assume a single ISR photon collinear with the beam, then momentum conservation in the z directions gives $E_{I S R}=\left|p_{z, 1}+p_{z, 2}\right|$. We then write

$$
\begin{aligned}
E_{C M} & =E_{\tau, 1}+E_{\tau, 2}+E_{I S R} \\
& =\sqrt{p_{1}^{2}+m_{\tau}^{2}}+\sqrt{p_{2}^{2}+m_{\tau}^{2}}+\left|p_{z, 1}+p_{z, 2}\right| \\
& \approx p_{1}\left[1+\frac{m_{\tau}^{2}}{2 p_{1}^{2}}\right]+p_{2}\left[1+\frac{m_{\tau}^{2}}{2 p_{2}^{2}}\right]+\left|p_{z, 1}+p_{z, 2}\right|
\end{aligned}
$$

when we consider the limit $p_{i} \gg m_{\tau}$. Rewriting in terms of p_{T} and $\theta_{1,2}$

$$
\begin{aligned}
0 \approx & p_{T}^{2}\left(\left|\cot \theta_{1}+\cot \theta_{2}\right|+\csc \theta_{1}+\csc \theta_{2}\right) \\
& -p_{T} E_{C M} \\
& +\frac{1}{2} m_{\tau}^{2}\left(\sin \theta_{1}+\sin \theta_{2}\right)
\end{aligned}
$$

which is a quadratic equation in p_{T}, with solutions

$$
\begin{aligned}
p_{T} & \approx \frac{E_{C M}}{2 A}\left(1 \pm \sqrt{1-4 A C \frac{m_{\tau}^{2}}{E_{C M}^{2}}}\right) \\
A & =\left|\cot \theta_{1}+\cot \theta_{2}\right|+\csc \theta_{1}+\csc \theta_{2} \\
C & =\frac{1}{2}\left(\sin \theta_{1}+\sin \theta_{2}\right) .
\end{aligned}
$$

If each tau has several solutions, apply equal weight

$$
\text { weight } w=\frac{1}{n_{\tau} \cdot n_{\text {sol }}}
$$

 cf.
two taus have a polarimeter : each tau has one solution $=>n_{\tau}=2, n_{\text {sol }}=1$ two solutions $\Rightarrow n_{\tau}=2, n_{\text {sol }}=2$
reconstructed $m_{\tau \tau}$ vs MC $m_{\tau \tau}$

The number of solutions, in all $e^{-} e^{+} \rightarrow \tau^{-} \tau^{+}$events (left) and those with small ($<5 \mathrm{GeV}$)

Comparison with MC

The reconstructed direction is typically within a few mrad of the true direction.

